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5  
Discrete-time Fourier transform (DTFT) of aperiodic and periodic signals 

  

We started with Fourier series which can represent a periodic signal using 
sinusoids. Fourier Transform, an extension of the Fourier series was developed 

specifically for aperiodic signals. In chapter 4 we discussed the Fourier transform 

as applied to continuous-time signals. Now we examine the application of Fourier 

transform to discrete-time signals. We already discussed the discrete-time Fourier 

series (DTFS) as applied to periodic signals in Chapter 3. Here the same ideas are 

applied to aperiodic signals to obtain the Fourier transform. 

 

Whether periodic or non-periodic, discrete-time signals are the main-stay of signal 

processing. Signals are collected and processed via sampling, or by devices which 

are inherently discrete. Despite the fact that sampled signals “look” like their 

analog parents, there are some major conceptual differences between discrete and 

continuous signals.  However, the fundamental concepts of Fourier transform 
discussed in Chapter 4 for continuous-time signals apply equally well to discrete-

time signals with only minor differences in scaling. 
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Figure 5.1 – An aperiodic discrete-time signal can be considered periodic if 

period is assumed to be infinitely long.  

 

Let’s do the same thought experiment we did for continuous signals. Given a 

piece of a discrete and ostensibly aperiodic signal such as in Fig. 5.1, we 
conceptually extend its period. The signal [ ]x n is just 5 samples, but we pretend 

that the signal is periodic with period 0N . But then we say that this period can be 

very long, maybe even infinitely long. So if we extend the period of this signal to 

, we basically get back the original signal [ ]x n  which is now surrounded by a 

sea of zeros. 

0

0
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N

Lim x n x n                         (5.1) 

 

As we increase 0N , in limit the result is the starting signal, but it can now be considered a 

periodic signal, although only in a mathematical sense. We can’t see any of the periods. 

They are too far apart. And now since the signal is periodic, we can use the discrete-time 

Fourier series (DTFS) to write its frequency representation in terms of complex 

coefficients as 

 

 
0

0

0

0

1

00

1
[ ]

N
jk n

k N
N n

C Lim x n e
N

                                                (5.2) 

 

Discrete-time Fourier Transform (DTFT) 

 

Recall that in Chapter 3 we defined the fundamental digital frequency of a discrete 

periodic signal as 
0

2
0 N , with N0 as the period of the signal in samples. As 0N goes to 
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infinity, from this definition, the fundamental frequency goes to zeros as well. Hence the 

harmonics which are defined as integer multiple of the fundamental frequency, such as  

0k  also lose meaning. We can also think of the fundamental frequency as the 

resolution of the frequency response, so if this number is zero, then the frequency 

becomes continuous and k, the harmonic identifier drops out entirely.  Also the signal 

itself from Eq. (5.1) can be written as a periodic signal x[n], dropping all the limits etc.. 

Just as we discussed in Chapter 4, the result of extending the period to infinity 
leads to a frequency response which is continuous in frequency, even though the 

signal itself is discrete in this case. 
 

Now we define a new transform called the Discrete-time Fourier Transform of 

an aperiodic signal as 

 

DTFT ( ) [ ] j n

n

X x n e        (5.3) 

 

Here [ ]x n  is an aperiodic discrete-time signal. In Chapter 4 we defined the 

continuous-time Fourier transform as given by 

 

CTFT                ( ) ( ) j tX x t e dt   (5.4) 

 

Notice the similarity between these two transforms. The CTFT ( )X , of the 

continuous-time signal x(t) is also continuous in frequency. The DTFT or X( )  is 

continuous in frequency for the same reason that the CTFT is continuous: due to 

the extension of the period to . Both X( )  and X( )are shown with round 

brackets for this reason.  

 

The CTFT frequency is termed  whereas the digital frequency in DTFT is given 

this symbol, . The digital frequency  as we learned in Chapter 3 is unique only 

over a single 2  range. The DTFT, same as the CTFT, is a way of expressing the 

signal x[n] using harmonic exponentials. The spectrum in each case are the 

relative magnitudes of these harmonics.  

 

The continuous and infinitely long functions are great in textbooks but impractical 

in real life. So a continuous time spectrum is actually not a desirable result. What 

we want is a discrete response, which is far more practical. Discrete data is much 

easier to store, manage and manipulate. As engineers working with numbers, we 
want a spectrum that is discrete and one which we can compute in a discrete 

manner using computers. However we are not quite there yet.  
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Starting from the definition of DTFT in Eq. (5.3), we now derive the time domain 

function, [ ]x n  that resulted in this X( ) or the DTFT. We refer to this as “taking 

the inverse DTFT”.  This is written in short-hand as iDTFT.  To take the iDTFT, 

we multiply both sides of Eq. (5.3) by 2j ne and then integrate both sides over 

2 .  In this case m is the dummy variable.  
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             (5.5) 

           

Now we continue to manipulate the RHS.  
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(5.6) 

 

The last row is still complicated looking. But we note that the underlined part in 

the last row is summation of the complex exponentials (CE) (m )j ne  and is in fact 

equal to shifted delta function, (m )n . Now normally in most books, this 

would be left as “an exercise for the student”, but we take you on a detour to 

examine this point. However, instead of showing that integration of 
(m )j ne  is 

equivalent to a shifted impulse, we will show only that integration of 
( )j ne  is 

equal to a single impulse.  From there we ask you to extrapolate the result. In 

fact a sinc function in discrete time looks just like a delta function and is in fact 

equivalent to a delta function. 

 
A Sinc detour 

 

Commented [Ma1]:  
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The sinc function is 0 for integer values of k, except at k = 0, when its value is 1 

as we see in Fig. 5.2. Hence the sinc function can be equated to a delta function 
for the discrete case. We generalize this finding of the sinc function to the following 

shifted case. 
 

( )1
( )

2
j k ne d k n                                     (5.8) 

 

The second expression says that the summation of time shifted CEs gives us a time 

shifted delta function in discrete-time.  

 

 
 

Figure 5.2 - (a) The discrete sinc, (b) longer version of sinc still looks like a 

delta function, (c) the continuous version of the sinc and the discrete values, 

and (d) the magnitude of the sinc function. 

 

F5_ sinc 

 

Fig. 5.2(a) shows the discrete sinc function. For every value of k, an integer other 

than 0, the sinc function is equal to 0. It looks suspiciously like a delta function 
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here. As we increase k, we see in (b) it keeps looking like a delta function. This 

equivalence to a delta function is in fact not a function of the length. In (c) we 

plot the continuous values of the sinc function along with the discrete values. For 

values of k, not integers, we now get non-zero values which shows us what the 

function looks like in continuous-time. The delta function “look” of the sinc 

function is a form of discrete deception. The discrete version is picking up only 
the values at certain points which are all zero. None others are computed nor can 

we see them. So for all practical purposes, a discrete version of the sinc is a delta 

function. In (d), we see the same continuous functions as in (c) but with its 

absolute value, as it is typically shown in books. Also note that the sinc function 

is crossing the zero axis at integer values of . So we can write the x axis in 
terms as shown in (d).  

 
Back to the DTFT 

 

Substituting Eq. (5.8) into Eq. (5.6), we get 

 

1
( ) [n] (n )

2
j m

n

X e d x m  

 

From the sifting property of the delta function, the right hand side becomes [m]x , 

and since this not a function of n, we end here. Hence the inverse DTFT of Eq. 

(5.3) is the time domain function [ ].x n   

 

 

iDTFT          
1

[ ] ( )
2

j nx n X e d      (5.9) 

DTFT            [ ] j k

k

X x n e  

 

The forward transform or the DTFT is denoted by symbol X . However, you 

will find other ways of denoting the DTFT.  Oppenheimer book refers to it as 
jX e , whereas both Miral book and the Lathi and Green books refers to it by 

X . These notations are basically convention and not that important. In 

speaking, most all of these forms are referred to as simply as the “Fourier 

Transform” or even the more generic “spectrum”. And even more egregiously 

some people call this a FFT, which it may or may not be. Since most signals we 

deal with in practice are discrete, the time qualifier is dropped and we can just 

call these as the Fourier transform. However, in this book we will continue to 

refer to each type of transform by its full formal name, CTFT, DTFT, DFT etc. 
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Magnitude and phase spectrums 

 

The DTFT X is generally a complex function. We can show it in two ways, just 

as all the other Fourier representations, either as its real and imaginary 

components which are the coefficients of the cosine and sine harmonics or we can 
show them by magnitude and phase. Both methods are often employed as 

needed.   

 

 ( )
j X

Phase
Magnitude

X X e   

 

For real signals, the magnitude is symmetrical (or even) and the phase is odd.  

 
DTFT is continuous and periodic with period of 2   

So first we say that the period of a signal is assumed to be infinitely long and 

now we are saying that the DTFT is periodic. How can that be? Well what we 

mean by that is the spectrum i.e. X( )repeats with 2 .  This talk of a frequency 

that is measured in ' s  can be very confusing. But we must accept the fact that 

the DTFT is defined in terms of the digital frequency and not Hz. The signal 

consists of discrete values and hence can only be represented by N harmonics, 

the length of the signal and nothing else. In order to make the analysis 

independent of real time, i.e. the time between the samples, DTFT is instead 

defined in terms of radial movement. This, if you trust us, makes the math, easier 

(ha!).  

 

Unlike continuous frequency, discrete frequency, , with units of radians per 

sample, lacks a time dimension. It is periodic only in an angular sense. It is 
unique for values in only one range. We should not think of it as number of 

samples or, or time it takes to cover 2  radians because that is just not part of its 

definition. The range 0  of the digital frequency and the spectrum 

computed thereof is called the principal alias as we noted in Chapter 3.  

 

Because of this condition, the coefficients for harmonic frequencies outside 0 to 

2  are just copies. Hence there is no need to compute X( ) outside the 2  

range. Anything beyond that just repeats the same values from the 2  range, or 

in fact from any such range. We can ignore all these “replicated spectrums” as 

they are identical to the principal alias. We write this property as 

 

 ( ) ( 2 ) for all in range of , , an integerX X m m   (5.10) 

 

This comes from the simple observation that 
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Every 2  , ( )X  is identical to the one before. This property simplifies the 

computation as we need only integrate over a 2 range of the digital frequency. 

Since the area under a periodic signal for one period does not change no matter 

where you start the integration, we can generalize the DTFT equation over any 

range. We can for example write the equation for the iDTFT in the second 

manner, with integration range written as just 2  , and both are valid. 
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Comparing CTFT with DTFT 

 

Let’s examine how CTFT compares to the DTFT for an aperiodic signal. 

 

 
 

Figure 5.3 - Comparing CTFT with DTFT 

(a) aperiodic CT signal, (b) its CTFT is continuous, (c) a sampled discrete signal (d) is 

same as (b) but repeats with 2 . 

 

 

Both CTFT and DTFT have a very similar construct. Assume that the CTFT of the 

signal shown in Fig. 5.3(a) is as shown in (b). We see a single spectral mass 
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around zero frequency with a continuous frequency resolution. Now take the 

same signal in discrete form (c) and it has a DTFT that is continuous just as the 

CTFT, but this one repeats with 2  radians. This is the same result we showed 

for discrete-time Fourier series. So note that DTFS and DTFT are very similar. 

 

We will now show some examples of the DTFT. In these examples, we compute 

only the principal alias which is the DTFT around the zero frequency, from 

to . However, we must not lose sight of the fact that the DTFT spectrum 

copies go on forever on each side of the principal alias, as we see conceptually in 

Fig. 5.3(d).  

 

The DTFT has the same behavior as the CTFT in most cases when the signal is 
bandlimited to 2 .  The CTFT properties shown in Chapter 4, Table I are equally 

valid in conceptual sense for discrete signals. These properties can be used to 
compute the DTFT for many signals, starting with the knowledge of the DTFT of 

some of the basic signals. We can in most cases take a CTFT equation, change the 

continuous frequency  to digital frequency notation  and then change 

continuous time t to discrete time notation n and get a valid expression for the 

DTFT. However, what we get this way is only the principal alias because CTFT 
does not repeat. We must recognize that DTFT repeats forever. 

 

The DTFT is a bridge topic to get us to the Discrete Fourier transform (DFT), a 

widely employed and a very useful algorithm. DFT is discrete in both time and 

frequency domain and can be calculated easily by software such as Matlab. The 
Fast Fourier Transform (FFT) was developed to make computation of the DFT 

quick and efficient. It is just a computation algorithm and not a unique type of 

Fourier transform. The DTFTs for most signals other than a few simple ones you 

see in text books are hard to compute, requiring one to pull out integral tables. 

Nor are they commonly used in real-life engineering. So why bother with DTFT if 
the subject is so theoretical? The main reason is that until we understand DTFT, 

we cannot fully appreciate the DFT. Ehen learned as a stand-alone topic, the DFT 

makes sense only in a procedural sense but one lacks deeper understanding of 

where it is coming from. 

   
 

 

DTFT from CTFT 

 

DTFT can be obtained directly from a CTFT. Let’s compute the DTFT of a signal whose 

CTFT we know. 
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( ) 1, ( ) 2 ( )

[ ] 1, ( ) ?

x t X

x n X
  

 

This is a trivial case. By making the appropriate changes, we get 

 

 ( ) 2 ( )X for   

 

This is the principal alias only. The complete DTFT repeats, just as we have repeated 

ourselves endlessly, so we extend the above expression to 

( ) 2 ( 2 )
k

X k for all  

For each k, we get an impulse at frequency 2 k  , so this says that the spectrum of a 

constant discrete signal is ever repeating impulses at integer multiples of 2 .   

 

DTFT of a delayed impulse 

 

The delayed impulse 0[ ] [ ],x n n n   is a very important signal. Nearly all 

discrete signals can be decomposed as a summation of this signal. Again we can 
take the CTFT of a delayed impulse and change the terms to their discrete 

equivalents but instead we will do the math for this case using the DTFT equation. 

We compute the DTFT of a delayed unit-impulse function, 
0[ ] [ ]x n n n    using 

the DTFT Eq. (5.6). 

 

0[ ] [ ] j n

n

X n n e               

 

The product of functions, 
0[ ]n n  and 

j ne  is non-zero only at point 0n , so we 

simplify the RHS as 

 

0[ ]
j n

n

X e          

 

Since 0j ne  is not a function of n, we can ignore the summation and the DTFT is 

simply equal to  

 

0

0[ ] ( )

[ ] j n

x n n n

X e
           (5.11) 

 

The magnitude of this transform is equal to  
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 0

0 0[ ] cos( ) sin( ) 1j nX e n j n   

 

So matter what the shift, the magnitude remains the same. The phase however is 

 

0

0

sin( )
( ) tan

cos( )

n
X a

n
  

 

And will change with the shift. This result is exactly the same as if we had applied 

the time-shift property to a zero-shift delta function. The time shift property states 

that the Fourier transform of a shifted signal is equal to the Fourier transform of 

the un-shifted signal times a CE of frequency 0n , which is exactly what we have 

here. If the shift is equal to 0, then we get 

 

0

[ ] ( 0)

[ ] 1j n

x n n

X e
      (5.12) 

 

The transform of the un-shifted delta signal is of course 1 as we see in Figure 

5.2(b) and we can see that the DTFT of this signal is a purely continuous function 
of . If 0n  = 2, we get 

 

2

[ ] ( 2)

[ ] cos(2 ) sin(2 )j

x n n

X e j
 

 

In figure 5.4, we see the effect of the delay on the transform of the delayed 

function, with no change in magnitude but the phase change by 4 ,  with 2 phase 

delay per sample delay. We see a total of 4  phase travel over the range in (f). 

 

 



 

Fourier Transform of aperiodic and periodic signals - C. Langton    Page 12  

 

Figure 5.4 - Comparing ( )X  of an unshifted and shifted impulse.  

F5_54Impulse 

 

 
Linear superposition of impulses 

We now compute DTFT of a discrete signal that combines several shifted impulse 

functions. 

  

[ ] [ ] 2 [ 1] 4 [ 2]x n n n n  

  

We treat each one of these delta function individually by applying the linearity 

principal.  

 

1 2

Img

( ) [ ] 2 [ 1] 4 [ 2]

1 2 4

1 cos( ) sin( ) 2cos(2 ) 2sin(2 )

1 cos( ) 2cos(2 ) sin( ) 2 sin(2 )
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k k k

j j
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e e
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Note that since the digital frequency ,  has units of radians, we do not have a 

time variable to go along with it. 
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F5_55DTFT of sampleseq 

  

Figure 5.5 – DTFT of (a) the discrete aperiodic signal, (b) Principal alias, (c) 

its phase and (d) the real repeating DTFT. 

 
We note that the DTFT is continuous and repeats with 2 .   The spectrum shown covers 3 

periods, the rest are all there, outside the bounderies of the plot. We don’t show them but 

they are indeed there. 

 

Let’s take a look at another way of computing the DTFT of the shifted impulses of 

this signal. 

 

 [ ] 2 [ 1] 3 [ 2] 5 [ 4]x n n n n  . 

 

Here instead of doing the math, we will apply the time-shift property to each of 

these delta functions. The DTFT of a delayed delta function is a CE of frequency, 
0j ne  as per result from DTFT of a delayed impulse. From that, we write the 

DTFT of this composite function easily, as the summation of the individual terms. 

Each of the delta functions corresponds in frequency domain to a frequency of the 

delay as in Eq. (5.11). Once again, note that the units of the digital frequency are 

radians as the x-axis of the spectrum is usually given in terms of . 
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[ ] 2 [ 1] 3 [ 2] 5 [ 4]

[ ] 2 3 5j j j

x n n n n

X e e e

 

 

 
 

Figure 5.6 - (a) The discrete aperiodic signal, (b) the repeating DTFT, with 2 

copies shown. 

F5-Ex3 

 
DTFT of a square pulse 

 

Square waves are very useful as a model of real signals. What you learn from 

these signals, you can then generalize to nearly all shapes. Let’s start with a 

square pulse of width N discrete samples. However, note that signal length is not 

N, it is longer and in fact is it not infinitely long? Hence the parameter N has 

nothing to do with the length of the signal.  It is just the width of the pulse itself 

and not the length of the period that matters. Note that in this example, the 

square pulse is centered at 0. We assume that N is odd. We define this function 

as 

 
1 ( 1) 2 ( 1) 2

[ ]
0

N n N
x n

Elsewhere
 

 

We compute the DTFT as  
( 1)/2

( 1)/2

( ) [ ] 1

2 1
sin

2

1
sin

2

N
j n j n

k n N

X x k e e

N

                           (5.13) 
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The result in the last row is the Drichlet Function. (Peter Gustav Lejeune Drichlet , a 

German mathematician)  
 

 We can also write the result as follows. 

( ) ( , )X Diric N   (5.14) 

 

Now we plot the DTFT using Eq. (5.14) for various values of N, which is the width 

of the square pulse in samples. The absolute value of the Drichlet function is 

plotted vs. the true value in the RHS of Fig. 5.7. The length of the signal in the 

LHS is12 samples in each case. Can you say what would happen to the DTFT on 

the RHS, if we increase the length of the signal from 12 samples to 100 samples. 

Actually nothing would change, we would get exactly the same function. DTFT is 

not a function of the total number of samples beyond the pulse. The DTFT as we 

can see in (5.14) is a function of only the number of samples of the square pulse 

or N. That’s because the formulation of the DTFT already assumes that zeros on 

the sides go on forever. 

 

Figure 5.7 – A pulse of length N = 3, 5, 7 samples and its spectrum  
F5-squarewaves 

 
Drichlet detour 

The Drichlet function in the DTFT of an aperiodic square pulse is often called the 

periodic version of the sinc function. These two are phenomenally important 

functions in signal processing.  

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPeter_Gustav_Lejeune_Dirichlet&ei=cWs4VfLEDJGwogSA34CIDg&usg=AFQjCNG5Dyt47NbdldCffwkDdWqESnRr1A&sig2=lXrvTZdiTbT9xXnzBLkLuQ&bvm=bv.91427555,d.cGU
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPeter_Gustav_Lejeune_Dirichlet&ei=cWs4VfLEDJGwogSA34CIDg&usg=AFQjCNG5Dyt47NbdldCffwkDdWqESnRr1A&sig2=lXrvTZdiTbT9xXnzBLkLuQ&bvm=bv.91427555,d.cGU
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Figure 5.8 - Sinc and the Drichlet function 

 

We plot both of these functions in Fig. 5.8. The Sinc function in the top row is 

continuous and is aperiodic. The Drichlet in the second row appears similar to the 

Sinc and but is periodic with 2 ,  for N = odd and with a period of 4  when N is 

even. (We don’t see this in Fig. 5.8, because the plot contains absolute values so 

all the lobes are on the positive side.)  

 

Let’s examine the Drichlet function in a bit more detail. Fig. 5.9 shows the 

behavior of the Diric function (the Matlab version of the Drichlet) as a function of 

digital frequency. Recall that units of digital frequency are radians. We see that 

the number of zero crossings in the range of 2 ,  are equal to N – 1.  For N = 5, we 

see 4 zero crossings, for N = 9, we see 8 zero crossing. The function is non-zero 
only at 0. On RHS, we see the same function over a longer range of digital 

frequencies plotted along with a sampled-discrete version. The discrete version of 

this signal is interesting. It looks like an impulse train just as did the sinc function 

for a single impulse.  

 

Where the sinc function looks like a single impulse when sampled, Drichlet looks 

like an impulse train, with impulses present every 2 . The discrete version is 

shown by the dots. The Diric function crosses zeros at all frequencies equal to 
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(2 / )m N  where N is the order of the diric function as in Matlab diric(f, N). 

Hence for N = 5, the zeros occur at 2 5, 4 5, 6 5, 8 5, . , for N 

= 6, the zeros occur at 2 6, 4 6, , 8 6, . etc. 

 

 
 

Figure 5.9 - The Drichlet function (a) N = 5, (b) N = 7, (c) N = 9. The x-axis is 
in radians. The zero crossings occur at 2 /n N . 

 

F5_55Driric for N567 

 

 
Applying time-shift property to the DTFT of a square pulse 

What is the DTFT of a square pulse, when not centered at 0? We can think of this 

as a square pulse located at zero frequency but with a time-shift.  Knowing the 

time-shift property is a very handy thing. The analysis is same as in un-shifted 

case, except we are going to add a time shift. We assume that the pulses are 

centered at L samples from the origin. The time-shift is L units. The DTFT can 

now be written from the time shift property as simply the DTFT times the CE of 

frequency per Eq. (5.11) j Le  as follows 
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2 1
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            (5.15) 

 

In Fig. 5.8, we plot DTFT for two pulse widths, N= 3 and, N = 5. Each with shift, 

L = 10 samples. On the LHS, we see the un-shifted square pulse, on the RHS, the 

shifted version. We see from Eq. (5.15) that the magnitude of the DTFT did not 

change, the shift results in no change in the magnitude of the DTFT, only the 

phase. We see the same thing for N = 5 in Fig. 5.9 

 

Figure 5.8 – Time shift property for N = 3 

 

 

Figure 5.9 - Time Shift property for N = 5 

 

For both cases and in fact all cases, a time shift shifts the phase but the magnitude 

stays the same. 
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Time expansion property 

Let’s take this signal which looks like it has zeros inserted in a 3 sample square 

pulse, [1001001]x  . We can write this discrete signal as  

 
 (n) ( 3) ( 6)x n n   

 

There are many different ways of computing the DTFT of such a signal. Here we 

apply the time-expansion property to show a more efficient method. The pulse of 

N = 3 has been expanded by a factor of 3 by inserting these zeros. We write the 

time-expansion property as 

 
1

( )x at X
a a

             (5.16) 

 

The DTFT of a square pulse for N = 3, when interpolated with two zeros shrinks 

by a factor of 3. We can of course compute the DTFT directly as we did for the 

shifted impulse case. This is equal to  

 
1

3 2

1
6

sin1
( )

3 sin

N
X                         (5.17) 

 

We see that adding zeros between the samples, expands the signal but compresses 

the DTFT. In Fig. 5.9, we see this effect as more zeros are added. What happens if 

N goes to infinity? Then only one delta function is left, and the DTFT will turn 
into a flat line. 

 

 
 

Figure 5.10 - Time expansion property 



 

Fourier Transform of aperiodic and periodic signals - C. Langton    Page 20  

 

 
DTFT of a triangular-shaped pulse 

A triangular pulse is nearly as important in signal processing as the square pulse. 

It is the convolution of two rectangular pulses, something which comes up often. 

We write the triangular pulse as 

[ ] 1
n

x n n N
N

    

 

The pulse is 2N samples wide and symmetrical. The DTFT is computed as 

 

1

1

1

1

2

2

[ ] [ ]

1 1

1 2 1 cos( )

sin ( 2)

sin ( 2)

j n

n

N
j n j n

n

N

n

X x n e

n
e e

N

n
n

N

N

N

         (5.18) 

 

The result is a function that is the Drichlet function squared.  

 

Figure 5.11 -  A triangular shape pulse has a squared Diric signal response. 
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We could have also computed the DTFT of a triangular function by applying the 

convolution property. We recognize, that a triangle pulse is the result of a 

convolution of two identical rectangles. So we write the pulse as a convolution. 

[ ] *
n n

x n rect rect
N N

               (5.19) 

 

The DTFT of this convolution is the product of the DTFT of the individual square 

pulses. From that we get 

 
2

2 1
sin

2
[ ]

1
sin

2

N

X            (5.20) 

 

So knowing the properties can make the task of computing FTs easier in many 

cases. 

 
Computing the DTFT of a Raised cosine pulse 

The ubiquitous raised cosine pulses are used to transmit communications signals. 

They limit the bandwidth of the baseband signal and are easily built in hardware.  

cos sin

[ ]

1 2

s s

s s

ss

ss

n F n F

T T
p n

n Fn F

TT

 



   
   
    
 

  
 

   (5.21) 

Here Fs is the sampling frequency,  is a real number less than one and is called 

the roll-off factor, sT  is the inverse of symbol rate sR  . The first part is called the 

raised cosine and the second part which is the sinc function is called the cascaded 

sinc applied to the raised cosine pulse. If alpha = 0, we get an ideal rectangular 

shape, and if alpha = 1, we get a pure raised cosine shape. These parameters set 

the baseband bandwidth of the signal as  

(1 )sBW R               (5.22) 

To compute the DTFT of this pulse we will have to resort to some heavy-duty 

math.  But no need, as it has already been done for us by better minds. Here is the 

equation that gives us the CTFT of the above good looking pulse. 
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    (5.23) 

We plot the time-domain signal and its DTFT in Fig. 5.11. It looks very similar to 

a sinc function. Although this pulse goes on forever, for practical design, it is 

clipped to a certain length. 

 

Figure 5.12 - (a) Time domain root-raised cosine pulse shape (b) The spectrum of the 

raised cosine pulse for .5, .33, .25, .15   

Note that frequency domain looks like a low pass filter.  

 
DTFT of a Gaussian pulse 

The discrete-time version of the Gaussian signal is given by 

2 221
[ ]

2

nx n e   (5.24) 

 

To compute the DTFT of this signal, being good engineers we are going to again 

skip the math.  Others have already done it for us. The DTFT of this Gaussian 

shaped pulse, is also Gaussian in shape. You recognize why that happens; because 

the pulse is an exponential and the integral of such a function is also an 

exponential. The result is beautiful and elegant and a very useful thing to know. 

Many random signals are Gaussian in nature. Life is Gaussian and it is Gaussian in 

all its dimensions.  
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2 22( )X e    (5.25) 

 

Figure 5.13  - DTFT of a Gaussian pulse for  = 2. Note that all values are 

well contained within  3  = 6. 

 

Note that we would have to sample the Gaussian function by 4 times the 

maximum frequency in order to avoid significant aliasing. The reason is that this 

function has no obvious maximum frequency and no matter what we choose, the 

signal will still contain frequencies higher than that number albeit in low 

amplitudes. The alternate is to first filter the signal with an anti-aliasing filter 

before doing the DTFT. 

 
Now the DTFT of periodic signals  

 

All of the signals we looked at so far in this chapter were aperiodic, pulses 

standing alone. But what about discrete signals that are periodic? We have a 

transform for these as well and this is a yet one more type of Fourier transform. 

We call it the DTFT of periodic signal. The DTFT of periodic signals is our most 

important type of Fourier Transform. Not because periodic signals are so 

important but because, the DTFT for periodic signals turns out to be discrete. This 

is our real goal. We want a discrete spectrum! We stated that as our goal. The 

DTFT of periodic signals, when modified slightly for finite length signals, gives 

the Discrete Fourier Transform (DFT), the most used form and for which the 

well-known Fast Fourier Transform algorithm was written. It took us a lot of 

pages in this book and 100’s of years of history to get to this important point.  

 

However, we are not quite there yet. Let’s take a periodic but discrete-time signal 

with a period of N0  samples and write its discrete Fourier series equation.  Note 

we did not talk about a period when discussing DTFT of aperiodic signals, but we 
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will now. Period now becomes relevant because these signals are periodic, so 

they have a period! And whenever, we have a period, the frequency resolution 

becomes discrete. However to derive a transform for periodic discrete signals, we 

have to go back to discrete-time Fourier series as out starting point.  

 

The Fourier series is written in form of Fourier series coefficients for discrete-time 

signals as follows. (See chapter 3) 

 

0

0

[ ] jk n

k
k N

x n C e   (5.25) 

 

Where 0 02 N  is the digital frequency of the discrete signal and 0N  is the 

period of the signal. The coefficients of the harmonics are given by 

 
0

0

0

2

20

1
[ ]

N
jk n

k
n N

C x n e
N

  (5.26) 

   

Since now we have 0N  samples of a periodic signal, we can indeed compute these 

coefficients. Let’s take the DTFT of Eq. (5.26). 

 

0

0

0

0

( ) jk n

k
k N

jk n

k
k N

X C e

C e

  (5.27) 

 

The coefficients are not a function of frequency, so they are pulled out in front. 
The DTFT of the underlined part, a summation of complex exponentials is a train 

of impulses. 

 

0

0

02 ( 2 )jk n

k N m

e k m  

 

Substituting this expression into Eq. (5.27), we get the equation for the DTFT of a 
periodic signal.  

 

0

2
( ) 2 k

k

k
X C

N
  (5.28) 
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It may not be obvious here but the DTFT of a periodic discrete signal repeats the 

DTFS coefficients, kC at every integer multiple of the digital frequency. That’s 

what the second part, the impulse train is doing.  This formulation is quite 

different from the DTFT of an aperiodic signal which we computed in Eq. (5.6) 

and repeat here. 

 

( ) [ ] j n

n

X x n e    (5.29) 

 

The DTFT in Eq. (5.28) for a periodic discrete-time signal tells us that the DTFT 

of a periodic signal consists of its DTFS coefficients repeated every 0N  samples. 

Since 0N  is a finite number, the period of the signal, the samples are discrete and 

no longer continuous as they are for an aperiodic case.  The spectrum is now 

discrete. Just what we like! Who wants to do integration when we have 

computers. 

 

Repeating this important fact again: The DTFT of both the aperiodic and the 

periodic signal repeats. Looking at the spectrum, it appears as if the DTFT of a 

periodic signal is a sampled version of the DTFT of an aperiodic signal. Because 
of this, this case has come to be called the Discrete Fourier Transform, known 

by the acronym DFT and often thought of as a sampled version of the DTFT.  

 

In Fig. 5.14 we see the comparison of the CTFT and DTFT for a periodic signal. 

The CTFT of a continuous-time periodic signal is discrete but non-repeating. The 

DTFT for a discrete signal sampled at some frequency Fs, is discrete, however, it 
repeats at the sampling frequency Fs. 

 

 

 



 

Fourier Transform of aperiodic and periodic signals - C. Langton    Page 26  

 

Figure 5.15 - Comparing CTFT and DTFT for periodic signals 

 
Since the DTFT of a periodic signal is repeating DTFS coefficients, here we give a table 

of the DTFS coefficients for common signals. Knowledge of these makes computing the 

DTFT of periodic signals easy. 

 

Table I 

DTFS and DTFT of common function 

 

 Time domain signal DTFS  
0

0

0

2

20

1
[ ]

N
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k
n N

C x n e
N

 

DTFT 

( ) [ ] j n

n

X x n e  

1 [ ] 1x n  1 

0

2
2

k

k

N
 

2 [ ] [ ]x n n  

Impulse at 0 

Does not exist 1 

3 0[ ] [ ]x n n n  

A shifted impulse 

Does not exist 0j ne  

4 
0[ ] [ ]

m

x n n mN  

This is an impulse 

train of period N0. 

0

1

N
  

0 0

2 2

k

k

N N
 

5 0[ ] jnx n e   

A periodic complex 

exponential, with 

0

0

2

N
 

 
01

0

k mN

elsewhere
  02 2

k

k  

6 Cosine, periodic 
0

1
2

0

k mN

elsewhere
 0

0

2

2

k

m

k

k

 

7 Sine, periodic 
0

1
2

0

j k mN

elsewhere
 0

0

2

2

k

k

j k

j k

 

 

 
Now we look at a very basic discrete-time signal that is periodic. As we shall see, the 

DTFT instead of being continuous is discrete.  
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DTFT of a constant periodic function  
[ ] 1;x n n    

 

 
 

Figure 5.16 – DTFT of a constant discret signal 

 

What we have for [ ] 1x n  is an impulse train of constant amplitudes given by 

sample number n. Hence we can write such a signal as 

 

[ ] [ ]
k

x n n k  

 

 

( ) 2 ( 2 )
k

X k  




        (5.32) 

 

Recall from Chapter 4 that the amplitudes of the DTFT, is normalized value over 

one cycle and the real amplitude of the signal. The DTFT amplitudes just as the 
CTFT amplitudes are accurately related only to each other.  

 

Specifying things in digital frequency is actually quite confusing. Instead of 

specifying the pulse train by the sample number n, we state that the time between 

each pulse is equal to 0T  , how does that change Eq. (5.32)? Each sample is 0T  

seconds apart, which is the real-time period of this signal. We can convert the 

digital frequency into real frequency by dividing by this period as shown in Fig. 

5.16. The units become radians per second. 
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Figure 5.17 - DTFT of periodic pulse train 

 

An alternate way to think about the frequency-domain impulse train is to see it as 

a set of infinite number of impulse pairs centered at the origin. The DTFT of each 

pair corresponds to a cosine. Hence we have an infinite number of cosines, each 

located at an integer multiple of the fundamental frequency, of ever increasing 

frequency.   

 
DTFT of a sine wave 

 

Here is an ultimate student-friendly function, discrete but periodic. Assume its 
frequency is 0.   

 
 0[ ] sin( )x n n   

 

The DTFT of this function is computed as follows. First we write the sinusoid as a 

sum of exponentials, then since we know that the DTFT of the sum of 

exponentials is an impulse train, we apply the result from Example 5.12. 

 

 0 0
1 1

[ ]
2 2

j n j nx n e e
j j

  

 

Now we write the DTFT as 

 

 0 0( ) ( 2 ) ( 2 )
m m

X m m
j j

  

 

Clearly these are impulse trains, with frequency 0  and then repeating with 2  . 

We draw them in Fig. 5.18. Each pair of impulses is located around integer 

multiple of 0 the frequency of the sinusoid. Then the whole thing repeats with 

2 . 

 

 

 
 

 

Figure 5.18 - DTFT of a sine wave 
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Summary of the Fourier transform types 

In Fig. 5.19, we summarize four versions of the Fourier transform, for both 

periodic and aperiodic signals with both continuous and discrete time. Each has a 

unique behavior, however sharing many of the properties with each other. 

 

Periodicity -> 

Time-

resolution 

Aperiodic Periodic 

Continuous-

time (CT) 

CTFT 

 Continuous 

Frequency 

resolution  

 Spectrum does 

not repeat. 

 

CTFT 

 Discrete Frequency 

resolution  
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Discrete-time 

(DT) 

DTFT 

 Continuous 

Frequency 

resolution  

 Repeating 

spectrum with 

2pi. 

 

DTFT 

 Discrete Frequency 

resolution  

 Repeating spectrum 

with sampling 

frequency. 

 

Figure 5.19 – Four versions of the Fourier transform 

 

Why is the Fourier series not mentioned in this figure? The reason is that Fourier 

transform can deal with all of these types of signals, both periodic or non-periodic, 

as well as discrete or continuous-time signals. These various versions of the Fourier 

transform can be used to accomplish the same thing as the Fourier series and 
more. The series are redundant to the periodic versions of the Fourier transform 

so in our education they have served their purpose as a starting point. We can put 

them away now and move on. 

 
Table II - DTFT of common signals 

 

Signal, [ ]x n  DTFT, [ ]X  

1, n  [ ] 2 2
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X k  

1 0
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1 je
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0sin n  
0 02 2

n

k k  

0sin n  
0 02 2j j

n

e k e k  
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Summary of Chapter 5 

  

1. The DTFT of a discrete-time aperiodic signal is developed by 

assuming that the period of the discrete pulse is infinitely long.  

2. Because the period is presumed very long, the frequency resolution 

approaches zero, hence the DTFT, specified by ( ),X  becomes a 

continuous function of frequency. 

3. The DTFT of an aperiodic signal is a function of the digital 

frequency ,  which is unique only in 2  range.  The DTFT 

computed around the 0 frequency is called the principal alias.  

4. We need to compute the DTFT only in this range as DTFT in all 

other frequency ranges are identical to the principal alias. 

5. The DTFT is given by 

( ) [ ] j n

n

X x n e  

The frequency  is continuous. 

6. The iDTFT is given by 

 
2

1
[ ] ( )

2
j nx n X e d  

7. The DTFT of an aperiodic discrete signal is continuous and 

repeating.  

8. The DTFT of a periodic discrete signal is given by 

0

2
( ) 2 k

k

k
X C

N
 

9. The DTFT of a periodic discrete signals is the discrete-time Fourier 
series coefficients, kC   repeating at the sampling frequency of the 

signal. 

10. DTFT is most similar in behavior to discrete-time Fourier series, 

DTFS. The amplitudes however are normalized in DTFT. 

11. The DTFT of a discrete periodic signal is discrete, with frequency 
resolution of 02 / N with 0N  equal to the samples per period. 

12. DTFT leads us to the Discrete Fourier Transform (DFT) which can 
be used for finite length signals. 
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