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2 | Complex representation of
continuous-time periodic signals

Leonhard Euler
1707 - 1783

Leonhard Euler was a pioneering Swiss mathematician and physicist. He made important
discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced
much of the modern mathematical terminology and notation, particularly for mathematical
analysis, such as the notion of a mathematical function. Euler is considered to be one of the
greatest mathematicians to have ever lived. A student of Johann Bernoulli, Euler was the fore-
most scientist of his day. Born in Switzerland, he spent his later years at the University of St.
Petersburg in Russia. He perfected plane and solid geometry, created the first comprehensive
approach to complex numbers. Euler was the first to introduce the concept of log x and ex as
functions and it was his efforts that made the use of e, ı and π the common language of math-
ematics. Among his other contributions were the consistent use of the trigonometric sine, and
cosine functions and the use of a symbol for summation. A father of 13 children, he was a prolific
man in all aspects, languages, medicine, botany, geography and physical sciences and has left
his mark on our scientific thinking.– From Wikipedia
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CHAPTER 2. COMPLEX REPRESENTATION

Euler’s equation

e jωt = cosωt + j sinωt

This is the famous Euler’s equation. Bertrand Russell and Richard Feynman both gave
this equation plentiful praise with words such as “the most beautiful, profound and subtle
expression in mathematics” and “the most amazing equation in all of mathematics.” This
perplexing equation was first developed by Euler (pronounced Oiler) in the early 1800’s.

The e jωt in Euler’s equation is a decidedly confusing concept. What exactly is the role
of j in e jωt? We know from algebra that it stands for

p
−1 but what is it doing here with the

sine and cosine? Can we even visualize this function?

The complex exponential

The function e jωt goes by the name of complex exponential (CE). This function is of
the greatest importance in signal processing and Fourier analysis. We are going to discuss its
conceptual nature and its application to Fourier analysis.

e jωt = cosωt + j sinωt (2.1)

In Eq. (2.1), the complex exponential is on the left side and its sinusoid equivalent
expression on the right. Ignore for now the complex exponential e jωt on the left hand side
and examine the right hand side of this equation, containing the sine and cosine waves.

We can plot this function by assigning a value toω, and then for a range of t, calculating
both cosωt and sinωt values. Since the value of ω is a constant, we have three values now,
t the independent time variable and associated sin and cos values calculated at t. With these
three values, we can create the 3-D plot shown in Fig. 2.1. Time is plotted on the x-axis, and
the values of the two sinusoids on the other two axes, creating a three-dimensional figure of
a helix.

The expression for the negative exponential (with negative in the exponent) is written
as

e− jωt = cosωt − j sinωt (2.2)

The difference between e jωt and e− jωt can be seen in the Fig. 2.1(a) and (b) in that the two
helix seem to be rotating in the opposite directions. The negative exponentials are said to
rotate in the counter-clockwise direction and the positive exponentials rotate in the clockwise
direction. We can plot this graph in Matlab using this code.
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CHAPTER 2. COMPLEX REPRESENTATION
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Figure 2.1: e jωt when plotted looks like is a helix. It is a 3-D function of three values, time t, the
independent variable, and then for a fixed frequency ω, the values, sin(ωt) and cos(ωt) on the other

two axes. The exponent of the CE indicates direction of advance or movement, (a) positive exponent and
(b) negative exponent.
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Figure 2.2: The projections of the complex exponential are sinusoids. (a) e jωt and its two projections,
(b) e− jωt and its two projections. Note that the sine wave in this projection has different phase than one

for the positive CE in (a). That is the only difference between the two CEs.

Projections of the complex exponenetial

Since CE is a complex function, we examine its projections on the real and the imaginary
axes. In Fig. 2.2(a) we plot the projections of the helix on the Real and the Imaginary planes.
In Cartesian terms, these would be called the (X , Y ) and (Z , Y ) planes. The projections of
the complex exponential on these two planes are sine and cosine waves. The Real projection
of the complex exponential is a cosine wave and Imaginary projection is a sine wave.

For the negative exponent, or the so called negative complex exponential, the sine wave
is flipped 180◦ degrees from the positive exponential as we see in Fig. 2.2(a). Often this ex-
ponential is referred to as having a negative frequency, however it is not really the frequency
that is negative. From the definition of the negative exponent exponential in Eq. (2.2) we
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CHAPTER 2. COMPLEX REPRESENTATION

see that negative sign of the exponential results in the imaginary projection, the sine wave
doing a 180◦ phase change, or equivalently being multiplied by −1.

The Real part of the negative as well as the positive complex exponential is a positive
cosine wave.

Re
�

e− jωt
�

= cosωt Im
�

e− jωt
�

= − sinωt

The imaginary part of the positive exponential is a positive sine but is negative for the nega-
tive CE.

Re
�

e jωt
�

= cosωt Im
�

e jωt
�

= sinωt

The negative exponential has as its imaginary part a negative sine wave. The positive
exponential has a positive sine as its imaginary part. The real part, which is a cosine, is same
for both. We don’t see any negative frequencies here, an idea generally associated with the
negative complex exponential.

Now that we have these two forms of the exponentials, let’s do some math with them.
Adding and subtracting the complex exponentials, e jωt and e− jωt , and then after a little
rearrangement, we get these new ways of expressing a sine and a cosine.

1
2

�

e+ jωt + e− jωt
�

=
1
2 j

�

cosωt +���
�j sinωt − cosωt +���

�j sinωt
�

= cos(ωt)
(2.3)

1
2 j

�

e+ jωt − e− jωt
�

=
1
2 j

�

���
�cosωt + j sinωt −����cosωt + j sinωt

�

= sin(ωt)
(2.4)

Let’s see graphically what Eq. (2.3) and Eq. (2.4) look like. When we plot the two
composite exponentials, we get the two plots in Fig. 2.3. The first figure shows that this
composite exponential has a real projection of a cosine and the second, only the sine. The
helix is gone, it has collapsed into a cosine and a sine. Hence the sine and cosine can be said
to be composed of these two complex exponentials.

We are so used to thinking of sine and cosine as sort of atomic functions. It seems hard
to believe that they can be created by adding other functions. But Eq. (2.3) and Eq. (2.4)
tell us that both sine and cosine can be created by adding complex exponentials. How can
that be, when the CEs are 3-D functions? This is a case of two 3-D functions coming together
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Figure 2.3: (a) Plotting (e+ jωt + e− jωt)/2 gives a cosine wave with zero projection on the Imaginary
plane (b) Plotting (e+ jωt − e− jωt)/2 j gives us a sine wave with zero projection on the real axis.

to create a 2-D sinusoid. This sounds strange but it’s actually not an unfamiliar concept. We
can add two 2-D functions and get a 1-D function. An example is when we add a sine and
a 180◦ shifted sine, we get a straight line, a 1-D function. So a 2-D function created by two
3-D functions should not be a big stumbling block.

The sinusoids
So how did Euler’s equation come about and why is it so important to signal processing.

We will try to answer that by first looking at Taylor series representations of the exponential
ex , sines and the cosines. The Taylor series expansion for the two sinusoids is given in 2-D
by the infinite series as

cos x = 1−
x2

2!
+

x4

4!
−

x6

6!
+ . . .

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ . . .

(2.5)

Note that each one of these series is composed of many individual exponential functions.
So sine waves really are composed of exponentials! However these are real exponentials that
are non-periodic and not the same thing as the complex exponentials. Complex exponentials
are a special class of real exponentials and are used as alternate to the sinusoids in Fourier
analysis, since they are periodic and offer ease of expression and calculation which is not
obvious at first.

Real exponentials are used in Laplace analysis as the basis set instead of the complex
exponentials we use in Fourier analysis. Real exponentials are far more general than sinu-
soids and complex exponentials and allow analysis of non-periodic and transient signals,
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Figure 2.4: Sine wave as a sum of many exponentials of different weights.

something we are not going to cover in this book. Laplace analysis is a general case of which
Fourier is a special case applicable only to special types of periodic or mostly periodic signals.

Taylor series expansion for the exponential ex gives this series

ex = 1+ x +
x2

2!
+

x3

3!
+

x4

4!
+ . . . (2.6)

All three of these equations Eq. (2.5) and Eq. (2.6) are straight forward concepts. And
indeed if we plot these functions, we would get just what we are expecting, the exponential
of e and the sinusoids. How close our plots come to the continuous function depends on the
number of terms that are included in the summation.

The similarity between the exponential and the sinusoids series in Eq. (2.5) and (2.6)
shows clearly that there is a relationship here. Now let’s change the exponent in (2.6) from
x to jθ . Note we will use the term θ here instead of ωt to keep the equation concise. Now
we have by simple substitution, the expression for e jθ as

e jθ = 1+ jθ +
( jθ )2

2!
+
( jθ )3

3!
+
( jθ )4

4!
+
( jθ )5

5!
+ . . . (2.7)

We know that j2 = −1 and j4 = 1 , j6 = −1, etc., substituting these values, we rewrite
this series as

e jθ = 1+ jθ −
θ2

2!
−

jθ3

3!
+
θ4

4!
+

jθ5

5!
−
θ6

6!
−

jθ7

7!
+ . . . (2.8)

We can separate out every other term with j as a coefficient to create a two-part series,
one without the j and the other with

e jθ = 1−
θ2

2!
+
θ4

4!
−
θ6

6!
+ . . . This is cosine

+ jθ −
jθ3

3!
+

jθ5

5!
−

jθ7

7!
+ . . . This is j times sine

(2.9)
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CHAPTER 2. COMPLEX REPRESENTATION

We see that first part of the series is a cosine per Eq. (2.5) and the second part with j
as its coefficient is the series for a sine wave. Hence we showed that

e jθ = cos(θ ) + j sin(θ )

We can now derive some interesting results like the following. By setting θ = π/2, we
can show that

e jπ/2 =���
��cos(π/2) + j sin(π/2)

= 0+ j · 1

= j

By setting θ = 3π/2, we can show that

e j3π/2 =���
��cos(3π/2) + j sin(3π/2)

= 0+ j · −1

= − j

And an another interesting result

e jπ = cos(π) + j sin(π) = −1

⇒ e jπ + 1= 0

The purpose of this exercise is to convince you that indeed the complex exponential is special
sum of only a sine and a cosine. The function still retains a wondrous and mysterious quality,
with added tinge of fear. However, we need to get over our fear of this equation and learn to
love it. The question now is why bring up the Euler’s equation in context of Fourier analysis?
Why all this rigmarole about the complex exponential, why aren’t sines and cosines good
enough?

In Fourier analysis, we computed the coefficients of sines and cosines (the harmonics)
separately. We also discussed the three different formulations of the Fourier series using sines
and cosines, then only with cosines and then with complex exponentials. Fourier analysis
using the trigonometric form is not easy in practice. Trig functions are easy to understand
but hard to manipulate. Adding and multiplying them is a pain. On the other hand, doing
math with exponentials is considerably easier. (See examples in Appendix A.)

Using a single exponential can simplify math in Fourier series. This is the main advan-
tage of switching to complex exponentials in using the complex form of the Fourier series.
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CHAPTER 2. COMPLEX REPRESENTATION

The math looks hard but is actually easier. However complex exponentials bring with them
some conceptual difficulties. They are hard to visualize and are confusing at first.

Typically when we decompose something, we do it into a simpler form but here seem-
ingly a more complex form is being employed. A simpler quantity, a cosine wave is now
decomposed into two complex functions. But the net result is that it will make Fourier anal-
ysis simpler. We will go from simplicity to complexity and then to simplicity again.

Let’s take this sinusoid which has a phase term to complicate things and present it in
complex form.

x(t) = Acos(ωt + θ )

=
A
2

e j(ωt+θ ) +
A
2

e− j(ωt+θ )

=
A
2

e jωt e jθ +
A
2

e− jωt e− jθ

In the last row, we separated the exponential into its powers. If we expand this expres-
sion into trigonometric domain using Euler’s equation, we see that indeed we do get back
the trigonometric cosine wave we started with.

=
A
2

�

cos(ωt + θ ) +((((
(((j sin(ωt + θ ) + cos(ωt + θ )−(((((

((j sin(ωt + θ )
�

= Acos(ωt + θ )

Fourier series representation using complex exponentials

In Chapter 1, we used used trigonometric harmonics (the sine and cosine) as a basis set
to develop the Fourier series representation. The target signal was “mapped” on to a set of
sinusoidal harmonics, such as these based on fundamental frequency of ω0.

S =
�

sinω0 t, cosω0 t, sin2ω0 t, cos2ω0 t, . . .
�

What is a complex exponential? Well, we can think of it as a little suitcase packed
with two waves, a sine and a cosine of the same frequency. Hence it allows us to write the
Fourier series in a more compact form, with one CE representing both a sine and a cosine
(with dreaded j thrown in). A set of complex exponentials given by set S, can then be used
alternately as a basis set for creating a complex (but preferred) form of the Fourier series.

S =
�

. . . , e−3ω0 t , e−2ω0 t , e−1ω0 t , 1, e1ω0 t , . . . , emω0 t , . . .
�
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CHAPTER 2. COMPLEX REPRESENTATION

These complex exponentials also form an orthogonal set, making them easy to separate from
each other in an arbitrary signal. This is the main reason why we pick orthogonal signals to
represent something. Just as our 3-D world is defined along three orthogonal axes, X , Y and
Z , our signals can be similarly projected on a K-dimensional orthogonal set.

Recall that the Fourier series is a sum of weighted sinusoids. By weighted we mean that
each sinusoid has its own amplitude and starting phase. The time is continuous but frequency
resolution is not. Frequency takes on discrete harmonic values. If the fundamental frequency
is ω, then each ωk is an integer multiple of ω or kω hence is discrete no matter how large
k gets. The “distance” between each harmonic remains the same, ω.

f (t) = a0 +
K
∑

k=1

ak cos(ωk t) +
K
∑

k=1

bb sin(ωk t) (2.10)

The coefficients a0, ak and bk (which we call the trigonometric coefficients) are calcu-
lated by (from Chapter 1)

a0 =
1
T0

∫ T0

0

f (t)d t

ak =
2
T0

∫ T0

0

f (t) cos(kωt)d t

bk =
2
T0

∫ T0

0

f (t) sin(kωt)d t

(2.11)

The presence of the integral tells us that time is continuous. Now substitute Eq. (2.3),
and Eq. (2.4) as the definition of sine and cosine into Eq. (2.10), to get

f (t) = a0 +
K
∑

k=1

ak

2

�

e jkωt + e− jkωt
�

+
K
∑

k=1

bk

2 j

�

e jkωt − e− jkωt
�

(2.12)

Make the same substitution in Eq. (2.11).

ak =
2
T0

∫ T0

0

f (t)
1
2

�

e jkωt + e− jkωt
�

d t (2.13)

bk =
2
T0

∫ T0

0

f (t)
1
2 j

�

e jkωt − e− jkωt
�

d t (2.14)

Rearranging Eq. (2.12) so that each exponential is separated, we get

f (t) = a0 +
∞
∑

k=1

1
2
(ak − j bk)e

jkωt +
∞
∑

k=1

1
2
(ak + j bk)e

− jkωt (2.15)
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The coefficients in Eq. (2.13) can also be expanded as follows.

ak =
1
T0

∫ T0

0

f (t)e jkωt d t +
1
T0

∫ T0

0

f (t)e− jkωt d t (2.16)

Look at this equation carefully. You see that the trigonometric coefficient is split into
two parts now, one for each of the exponentials. To make the new coefficients concise, let’s
redefine them with capital letters as complex coefficients, Ak and Bk

Ak =
1
2
(ak + j bk) (2.17)

Bk =
1
2
(ak − j bk) (2.18)

Substituting these new definitions of the coefficients into Eq. (2.16), we get a much
simpler representation.

f (t) = a0 +
∞
∑

k=1

Ake jkωt +
∞
∑

k=1

Bke− jkωt

where Ak =
1
T0

∫ T0

0

f (t)e jkωt d t

Bk =
1
T0

∫ T0

0

f (t)e− jkωt d t

(2.19)

It is clear from this equation that Ak can be thought of as the coefficient of the positive
exponential and Bk the coefficient of the negative exponential. These coefficients are not the
same as the ones we computed in the trigonometric form. They are complex combinations
of the trigonometric coefficients ak and bk.

The term a0 stands for the DC component. We generally do not like DC terms so we will
remove it by expanding the range of the index k from 0 to∞. Rewrite Eq. (2.19) as

f (t) =
∞
∑

k=0

Ake jkωt +
∞
∑

k=0

Bke− jkωt (2.20)

The above equation can be simplified still further by extending the range of coefficients
from −∞ to ∞. We can do this by changing the sign of the index which was one-sided
because we had included both positive and negative exponentials explicitly. Now both terms
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CHAPTER 2. COMPLEX REPRESENTATION

can be combined into one with a two-sided index to write a much more compact and elegant
equation for the Fourier series. Now we do not need the negative exponential in the equation.
The index takes care of that. And here is a much shorter equation for Fourier series in the
complex domain.

f (t) =
∞
∑

k=−∞
Cke jkω (2.21)

The coefficient Ck in Eq. (2.21) is given by

Ck =
1
T0

∫ T0/2

−T0/2

f (t)e− jkω0 t d t (2.22)

Ck is of course equal to the trigonometric coefficients in this fashion.

Ck =
1
2
(ak − j bk) if k ≥ 0

=
1
2
(ak + j bk) if k < 0

The Eq. (2.22) is called the complex form of the Fourier series. It is rigorously related
to the sinusoidal form. The magnitude calculated using the trigonometric form is exactly the
same as the magnitude from this from. It is most used form of the Fourier series.

As explained in Chapter 1, for the trigonometric form, the index k is always positive
and therefore the spectrum for the Fourier series using the trigonometric form is one-sided.
The x-axis for the one-sided spectrum is plotted against frequency starting at a “positive”
fundamental frequency. All k integer multiples of the fundamental frequency are positive as
well. Because the index is positive, all frequencies are said to be positive.

If the two forms are equivalent, then how do we get a negative frequency in the complex
form of the Fourier series? Does the frequency actually become negative when we use the
complex exponentials? This is a often asked question.

With complex formulation, the index k spans from −∞ to +∞. We start with the
negative index, go through calculations of all negative exponent exponentials and then the
positive ones. Note that at no point is the fundamental frequency ever negative. Hence it
is not the frequency of the exponential that is negative but just the index. The exponential
with the negative index k is different from the positive exponential in that the sign of the
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CHAPTER 2. COMPLEX REPRESENTATION

imaginary part is negative. We see nothing here that says that the frequency has suddenly
become negative because of the exponential exponent is negative.

e+ jkωt = cos(kωt) + j sin(kωt)

e− jkωt = cos(kωt)− j sin(kωt)
(2.23)

We now equate this form with the trigonometric form which seemingly had only positive
frequencies. To do that we look at what it takes to represent a sine and a cosine using complex
exponentials.

cos(kωt) =
1
2

�

e jkωt + e− jkωt
�

sin(kωt) =
1
2 j

�

e jkωt − e− jkωt
�

(2.24)

We require both a negative-index exponential and a positive-index exponential for both
the sines and cosines. Where index k is always positive on the left hand side of this equation,
it is both negative and positive on the right side. This traps us into thinking that frequency has
changed sign. Where in trigonometric form a positive index is enough to fully and completely
represent the signal, in complex form it takes a double-sided index. The spectrum is plotting
the product of the index and the frequency, (k . . .ω) and not just the frequency, ω on the x-
axis. But we very quickly lose sight of this fact. We start talking about positive and negative
frequencies because we confuse the range of the index with the sense of the frequency.

In a double-sided spectrum we are using the word frequency as an alternate name for
what we are really plotting, and what we are actually plotting is the index times the frequency.
Calling it frequency gives us some intuitive comfort but then we have to worry about what
a negative frequency means. When we say negative frequency, we have in fact unknowingly
converted a complex idea into simple everyday language. Because of the plotting convention,
the negative index is oft-forgotten and the axis is referred to as the frequency axis, spanning
both positive and negative domains. In this book, we maintain that there is no such thing as
a negative frequency. The idea comes from confusion caused by what the x-axis represents.

The complex coefficient values are one-half of what they are calculated in the trigono-
metric domain. Now here students of the subject make up another story that this is because
the frequency is being split into two parts, a negative part and positive part with each get-
ting half the coefficient. This is how most books try to explain the conundrum of positive
and negative frequency in relation to Fourier analysis. But they are just trying to explain a
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CHAPTER 2. COMPLEX REPRESENTATION

plotting convention. The real story is that we are not plotting frequency on the x-axis but
the term ±kω which is often just referred to of as frequency.

The reason the values are split in half can be explained intuitively. We have let the
index k go from −∞ to +∞, so now each frequency is multiplied by both a positive k and
a negative k. However, in reality, each frequency has only a finite energy, so to make it all
work out, the amplitude of this frequency is split between these two index.

There are certain things that are defined only as positive quantities, such as volume,
mass, age, etc. and frequency as a physical property is one of those things. However the word
frequency can indeed and is often used in a complex sense to include several parameters of
a wave.

Example 2.1. Compute complex coefficients of a cosine wave.

f (t) = Acos(ω0 t)

=
A
2

e j(k=1)ω0 t +
A
2

e j(k=−1)ω0 t (2.25)

This example is so simple that we can easily deduce the trigonometric coefficients just
by looking at the expression. In fact the equation is itself the perfect representation. The
complex coefficients are of magnitude A/2 located at k = 1 and k = −1. We plot the trigono-
metric coefficients, Ck, in Fig. 2.5 as the single-sided spectrum as well as the exponential
coefficients, Ck, as the double sided form. The x-axis variable is kω. Since ω is a constant,
we are really plotting, k, the index. Note it is not the frequency that is negative but the har-
monic index k. However in a typical plot, the x-axis is labeled as frequency. In these plots,
we have labeled it specifically as what it is, the term kω.

kω

A
2
A

kω

1ω−

1ω

1ω0

R
ea

l

Im
ag2

A

(a) One-sided spectrum (b) Double-sided spectrum

Figure 2.5: The spectrum of Acosωt. The trigonometric form gives us a one-sided spectrum with one
component located the ω. The complex form shows two components of half the total amplitude in the

real plane. Both components have positive amplitudes. The total energy in both forms is the same.
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Example 2.2. Compute complex coefficients of a sine wave

f (t) = Asinω0 t

=
A
2 j

e j(k=1)ω0 t −
A
2 j

e j(k=−1)ω0 t (2.26)
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(a) One-sided spectrum (b) Double-sided spectrum

Figure 2.6: The spectrum of Asinωt. The trigonometric form gives us a one-sided spectrum with one
component located the ω. The complex form shows two components of half the total amplitude of

opposite signs in the imaginary plane.

This example is just the same as the cosine example. The single-sided spectrum is easy.
It is simply a harmonic of magnitude A and located at k = 1 just as it is for the cosine wave in
Ex. 2.1. In Eq. (2.26), we write the complex form with the amplitudes of the two complex
exponentials of A/2 and −A/2 located at k = ±1. However there is a j in the denominator.
What to do with this? The presence of j tells us that the coefficients are on the Imaginary
axis, so they are to be plotted on the Imaginary plane, right-angle to the plane on which a
cosine lies. Drawn in 2-D form it has no computational effect, only that the vertical axis is
called the Imaginary axis. But when we have both cosines and sine waves present in a signal,
the coefficients of these two have to be combined not linearly but as a vector sum as seen
in Fig. 2.7. Why? Because the harmonics are orthogonal to each other. When plotting the
magnitude, it no longer falls in purely Real or Imaginary planes so in this case, we call the
vertical axis, just the magnitude. There is a bit of terminology sloppiness here, often that is
what makes signal processing so confusing.

Example 2.3. Compute the coefficients of f (t) = A(cosωt+sinωt). We can write this wave
as

f (t) =
A
2

e jωt +
A
2

e− jωt +
A
2 j

e jωt −
A
2 j

e− jωt (2.27)

We can pick out the trigonometric coefficients from the first equation. It is simply A for the
cosine and A for sine with magnitude equal to square root of

p
2A located at ω = 1. We get

the complex coefficients by looking at the coefficients of the two exponentials in Eq. (2.27).

46



CHAPTER 2. COMPLEX REPRESENTATION

kω

0

Re

Im

From sines

plotted on 

Imag. plane

A

B

2 2
A B+

Figure 2.7: Magnitude of the resultant vector if a signal contains both a sine and a cosine.

The e jωt exponential has two coefficients, at 90 degrees to each other, each of magnitude A/2.
The vector sum of these is A/

p
2. Same for the negative exponential, except the amplitude

contribution from the sine is negative. However, the vector sum or the magnitude for both
is the same and always positive. This is shown in Fig. 2.8(c) drawn in a more conventional
style showing only the vector sum. Note that the total energy (sum of magnitudes) of the
one-sided spectrum is exactly the same as that of complex.
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Figure 2.8: Amplitude spectrum of Asinωt + Acosωt.

Example 2.4. Compute coefficients of the complex signal f (t) = Acosωt+ j sinωt. We can
write this as

f (t) =
A
2

e jωt +
A
2

e− jωt +
A
2

e jωt −
A
2

e− jωt = Ae jωt

Now here we see something different. The coefficients from sine and cosine for the negative
exponential cancel out. On the positive side, the contribution from sine and cosine are coin-
cident and add. So we see a single value at the positive index of k = 1 only. For this signal
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both the single and double-sided spectrum are identical. This is a surprising and perhaps a
counter-intuitive result.

Important observation: Only real signals have symmetrical spectrum about the origin.
Complex signals do not.

kω

1ω1ω− 0

C
k

A

Figure 2.9: Double-sided spectrum of Acosωt + jAsinωt.

Example 2.5. Compute the coefficients of a constant signal, f (t) = A.

We can write this function x(t) = A or as an exponential of zero frequency.

f (t) = Acos(ω= 0)t

=
A
2

e j(ω=0)t +
A
2

e− j(ω=0)t

= A.

Thee trigonometric coefficient is = A at ω = 0. For the complex representation we get two
complex coefficients, both of amplitude A/2 and A/2 but both at k = 0 so their sum is A which
is exactly the same as in the trigonometric representation. The function f (t), a constant is
a non-changing function of time and we classify it as a DC signal. The DC component, if
any, always shows up at the origin for this reason. The single and double sided spectrum
here are same as well. This signal has only one component at ω = 0, hence it has only one,
coefficient a0. All the others are zero. So that is what we are seeing here in Fig. 2.10. Just
the a0 coefficient plotted.

Important observation: A component at zero frequency means that the signal is not zero-
mean.

Example 2.6. Compute coefficients of x(t) = 2 cos2(ωt).

We can express this function in complex form as

x(t) = 2
�

e jωt + e− jωt

2

�2

= 1+
1
2

e j2ωt +
1
2

e− j2ωt

48



CHAPTER 2. COMPLEX REPRESENTATION

0

kω

1

C
k

Figure 2.10: Double-sided spectrum of a constant signal of amplitude A. A constant signal is same as a
DC value, hence its spectrum always appears as an impulse at the origin.

0

kω

1

1

2

1

2

2ω− 2ω

C
k

Figure 2.11: Double-sided amplitude spectrum of 2 cos2(ωt).

Observation: A squared signal by definition is always positive so the spectrum has a zero-
frequency component in the center.

Example 2.7. Compute the coefficients of x(t) = 2 cos(ωt) cos(2ωt).

We can express this signal in complex form by making use of this trigonometric identity:
cos(a+ b) = cos(B)cos(A) + sin(A)sin(B).

x(t) = cos(ωt) + cos(3ωt)

=
1
2

e jωt +
1
2

e− jωt +
1
2

e j3ωt +
1
2

e− j3ωt

Of course doing this in trigonometric form would have been just as easy. But that is not
always true. We draw the spectrum as in Fig. 2.12.

Here too, we can apply the thinking process we saw in Chapter 1. This signal has two
components at ω = 1, 3, hence it has only two (four) coefficients, coefficient a±1 and a±3.
All the others are zero. So that is what we are seeing in Fig. 2.12. Just those four coefficient
plotted, with half the amplitude for each from the time domain equation.
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Figure 2.12: Double-sided amplitude spectrum of 2cos(ωt) cos(2ωt).

Example 2.8. Compute the complex coefficients of this real signal.

f (t) = sin(2πt) + .8 cos(8πt) + .3 sin(14πt)

The signal has three harmonics, at k = ±1,±4,±7. We can write this equation in complex
form as

f (t) =
1
2

e j2π(k=1)t +
1
2

e j2π(k=−1)t

+
0.8
2

e j2π(k=4)t +
0.8
2 j

e j2π(k=−4)t

+
0.3
2 j

e j2π(k=7)t +
0.3
2

e j2π(k=−7)t

Here we have contributions from both sine and cosine at k = 1, so these have to be vector
summed. The contributions at k = 2 comes only from a cosine and at k = 7 only from a
sine. Note we plot these on the same line at full magnitude as if j does not exist in the
equation. (We will drop mentioning the index k and call it frequency to be consistent with
common usage. However, note that it is this sloppiness in terms that causes us to question
our sanity and start asking: what is a negative frequency?) This signal has three components

kω

2ω− 2ω 4ω4ω−7ω− 7ω0

.5

.4

.15

.5

.4

.15

C
k

Figure 2.13: Two-sided magnitude spectrum.

at ω = 1, 4 and 7, hence it has only three (six) coefficients, coefficient a±1, a±4 and a±7.
All the others are zero. So that is what we are seeing here in Fig. 2.13. Just those three
coefficients plotted on each side, with half the amplitudes from the time domain equation.
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Example 2.9. Compute the complex coefficients of this real signal with phase terms. Then
compute its Power spectrum.

x(t) = 3+ 6cos(4πt + 2) + j sin(4πt + 3)− j6sin(10πt + 1.5)

We convert this to the complex form as

x(t) = 3+
�

3e j4πt e2 + 3e− j4πt e− j2
�

+
�

2e j4πt e3 − 2e− j4πt e− j3
�

+
�

3e j10πt e j1.5 − 3e− j10πt e− j1.5
�

= 3+ e j4πt
�

3e j2 + 2e j3
�

+ e− j4πt
�

3e− j2 − 2e− j3
�

+ 3e j10πt
�

e j1.5
�

+ 3e− j10πt
�

e− j1.5
�

The magnitudes of the exponentials come from the phasors in parenthesis. To add them we
need to convert them first to rectangular form as follows. (See Appendix A). The CE e j4πt

has the following coefficients.

e j4πt →
�

3e j2 + 2e j3
�

⇒
�

�3e j2 + 2e j3
�

�=
r

�

3 cos(2) + 2cos(3)
�2
+
�

3sin(2) + 2 sin(3)
�2

= 4.414.

Similarly, the coefficient of the negative exponential is

e− j4πt →
�

3e− j2 − 2e− j3
�

⇒
�

�3e− j2 − 2e− j3
�

�=
r

�

3 cos(2)− 2cos(3)
�2
+
�

3sin(2) + 2 sin(3)
�2

= 3.098.

We draw the spectrum in Fig. 2.14 and note that the spectrum is not symmetric because the
signal is complex.

Important Observation: Most signals we work with are complex hence their spectrum are
rarely symmetrical.

Power spectrum

You may be familiar with this expression of power from a circuits class. Power is equal
to:

P = V 2/R

Here V is the voltage or the amplitude of the signal and R the resistance. Let’s just assume
that R is equal to 1.0, in this case, the normalized power is equal to the voltage squared.
If we square the peak voltage, we get peak power, and if we square the mean voltage, we
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Figure 2.14: (a) Two-sided Magnitude spectrum of a complex signal, (b) its power spectrum computed
by squaring each component and converting to dBs.

get the average power. This idea is in fact exactly the same as Parseval’s Theorem, which
states that the power in a particular harmonic is equal to the square of its amplitude or the
coefficient. So for this particular example, to obtain the Power spectrum, we just square each
amplitude, convert it into dBs and then normalize for maximum power. The result is shown
in Fig. 2.14(b).

Now a difficult but a very important example, a periodic signal of repeating square
pulses.

Example 2.10. Compute the Fourier coefficients of the following periodic square wave. The
square wave is of amplitude 1 that lasts τ seconds and repeats every T seconds. (Note that
τ and T are different and independent.) First we compute the coefficients for a general case

t0        1  2        3        4      -4      -3       -2       -1

 

2τ2τ−

τ

T

Figure 2.15: A Square wave of period T and duty cycle 2/T.

for pulse time equal to τ sec. and repeat time equal to T sec. The term τ/T is called the
duty cycle of the wave.

Ck =
1
T

∫ τ/2

−τ/2
1 · e− j2kπ f0 t d t

52



CHAPTER 2. COMPLEX REPRESENTATION

Note that outside of −τ/2 < t < τ/2, the function is zero. This a pretty easy integral given
by

Ck =
1
T

e−( j2πk/T )t

− j2πk/T

�

�

�

�

τ/2

−τ/2

=
1
T

�

e( j2πk/T ) τ2 − e(− j2πk/T ) τ2

j2

�

1
πk/T

=
τ

T
sin(kπτ/T )

kπ(τ/T )

Replacing the duty cycle term τ with r, the equation becomes fairly easy to understand.

Ck = r
sin(kπr)

kπr
= rsinc(kπr).

The duty cycle of this signal is equal to

r =
τ

T
=

1
2

Substituting that in the above equation, we can write the expression for the coefficients of
this signal as

Ck =
1
2

sinc(kπ/2) (2.28)

This is the sinc function. It comes up so often in signal processing that it is probably the
second most important equation in DSP after the Euler’s equation.

Now we can plot the coefficients of the repeating continuous-time square pulse coeffi-
cients for various duty cycles. Note how the peakedness of the main lobe changes in opposite
fashion to the duty cycle. A narrow pulse relative to the period in Fig. 2.16(a), has a shal-
lower frequency response than one that takes up more of the period. The zero-crossings
occur at inverse of the duty cycle. For r = 0.5, the zero-crossing occurs at k = 2, for r = .25,
the crossing is at k = 4 and for r = .75, the crossing occurs at n = 1.33. At r = 1.0, the
pulse would be a flat line and it will have an impulse at its frequency response. For very
small r, the pulse is delta function-like and the response will go to a flat line. Note the usage
of words, frequency response. This is just another term for what we have been calling the
spectrum.

Although the equation for this function is fairly easy, it takes a while to develop intuitive
feeling. We cannot over emphasize the importance of this signal and you ought to spend
some time playing around with the parameters to understand the effect. We will of course
keep coming back to it in the next chapters.
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Figure 2.16: Fourier coefficients of a square pulse.
Note that as the pulse gets narrower in time, i.e. its duty cycle is small, then its frequency response is

shallow. But as the duty cycle increases, such as in (c), the response is becoming peaked.

In this chapter, we covered the complex form of the Fourier series as a prelude to the
next topic, the Fourier Transform. We see that even though the time domain function is a con-
tinuous periodic function, the Fourier series coefficients and hence the spectrum developed
is discrete. In Chapter 3 we will see how that affects the Fourier analysis.
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Summary of Chapter 2

In this chapter we look at the complex exponential as a concise way of representing the
sinusoids. They not only make the Fourier representation shorter to type, they also make
the math easier. The complex exponential is nothing but a three-dimensional sinusoid. The
spectrum of the Fourier series when using the complex form is double-sided, which means
that the frequency index spans from −∞ to +∞.

Terms used in this chapter:

• Euler’s equation
• Continuous-time Complex exponential, e jωt of frequency ω.
• Complex coefficients of Fourier series, Ck

• Double-sided spectrum

1. The sine and cosine can be represented by the complex exponentials. We use the
following expressions to represent them in Fourier series to obtain a complex form of
the Fourier series equation.

cos(kωt) =
1
2

�

e jkωt + e− jkωt
�

sin(kωt) =
1
2 j

�

e jkωt − e− jkωt
�

2. To represent a periodic signal using the complex exponentials requires a double sided
harmonic index k, unlike the trigonometric case where the harmonic index is positive.

3. The harmonic index extends from −K ≤ k ≤ +K . K can span from -∞ to +∞.
4. The x-axis now represent values from −Kω0 ≤ kω0 ≤ +Kω0 and this is often read as

representing negative frequency when in fact it is the index that is negative.
5. The Fourier series coefficients instead of being of three types can now be represented

by a single equation.

Ck =
1
T0

∫ T0/2

−T0/2

f (t)e− jkω0 t d t

6. The fundamental properties remain the same, the time in this representation is contin-
uous and frequency is discrete with index k, which is an integer.

7. The amplitude spectrum obtained from the complex representation looks different
from the one-sided spectrum. We call this spectrum a two-sided spectrum. The ampli-
tude value for a particular harmonic is now split in half for the positive index (so called
positive frequency) and half for the negative index (so called negative frequency). The

55



CHAPTER 2. COMPLEX REPRESENTATION

0-th component however remains the same. This conserves energy and makes both
forms equivalent.

Questions

1. What is a complex exponential?
2. What is the expression for a sine in the complex from?
3. What is the value of e− jπ, e j2π, e− j 3

4π.
4. Why is this equation true? Give your answer in words.

e jπ + 1= 0

5. What is the difference between two complex exponential of the same exponent but
different signs, such as e jωk t and e− jωk t . If we add these two signals, what do we get
in the complex domain?

6. What dimensional space is required to plot a complex exponential?
7. The term phasor is often used in relation to complex exponentials, what is it?
8. If you plot a sinusoid plus its shifted version, sin(2ω)+sin(2ω+φ0), what is the phase

of the new signal?
9. Represent this sinusoid as a complex exponential: cos

�

ωt + π
4

�

.
10. What is the relationship of Taylor series to a sinusoid?
11. What is the advantage of using complex exponential as a basis set instead of sines and

cosines?
12. Given these CEs, give their expression in the Euler from: e− j3, (e− j4 + e− j2), e− j π2 t

13. How would you express phase in the complex exponential form?
14. Write the CE form of these signals:

sin(7πt +
π

4
) cos(7πt +

π

4
)− sin(7πt −

π

4
) cos(3πt +

π

2
)

15. What is the magnitude of this complex signal, 2e−5 j t?
16. How do we transmit a complex signal? What does it look like?
17. What does division by j mean?
18. What does multiplication by j mean?
19. What is the magnitude and phase of these signals:

�

sin(ωt)− cos(ωt)
�

;
�1
2

cos(ωt)− sin(ωt)
�

;
�

2 cos(ωt)−
1
2

sin(ωt)
�

20. What is a single-sided spectrum? What does it represent?
21. Given the amplitude spectrum, how would you compute the power spectrum?
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22. What is two-sided spectrum of these signals?

f (t) = − cos(2πt) + cos(9πt) + sin(12πt)

f (t) = 2cos(9πt) + 2 cos(18πt)

23. When plotting a two sided spectrum, what does the x-axis represent? Is it frequency?
24. If you are given the real and imaginary components of a signal, how do you compute

the phase? Is phase changing with time or frequency?
25. For a complex signal, both real and imaginary signals can have non-zero phase, so

what is the phase of a complex signal? How is it different from the phases of the
components?

26. What is the relationship of the trigonometric coefficients to the complex coefficients?
27. Why the spectrum of a complex signal is always one-sided?
28. If we have a periodic signal of square pulses with a duty cycle of .1. How much wider

is its spectrum as compared to a pulse that has a duty cycle of .5?
29. What happens to the Magnitude spectrum if phase of the signal changes?
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Appendix A: A little bit about complex numbers

We can use complex numbers to denote quantities that have more than one parameter
associated with them. A point in a plane is one example. It has a y coordinate and a x
coordinate. Another example is a sine wave, it has a frequency and a phase. The two parts
of a complex number are denoted by the terms Real and Imaginary, but the Imaginary part
is just as real as the Real part. Both are equally important because they are needed to nail
down a physical signal.

The signals traveling through air are real signals and it is only the processing that is done
in the complex domain. There is a very real analogy that will make this clear. When you hear
a sound, the processing is done by our brains with two orthogonally placed receivers, the ears.
The ears hear the sound with slightly different phase and time delay. The received signal by
the two ears is different and from this our brains can derive fair amount of information about
the direction, amplitude and frequency of the sound. So although yes, most signals are real,
the processing is often done in complex plane if we are to drive maximum information.

90∠
o

3

3 j

3 j−

3−

R

I

Figure A.1: Multiplication by j shifts the location 0 f a point on a plane by 90◦.

The concept of complex numbers starts with real numbers as a point on a line. Multi-
plication of a number by −1 rotates that point 180◦ about the origin on the number line. If a
point is 3, then multiplication by −1 makes it −3 and it is now located 180◦ from +3 on the
number line. Multiplication by −1 can be seen as 180◦ shift. Multiplying this rotated number
again by −1, gives the original number back, which is to say by adding another 180◦ shift.
So multiplication by (−1)2 results in a 360◦ shift. What do we have to do to shift a number
off the line, say by 90◦? This is where j comes in. Multiply 3 by j, so it becomes 3 j. Where
do we plot it now? Herein lies our answer to what multiplication with j does. Multiplication
by j moves the point off the line.

Question: What does division by j mean?

58



CHAPTER 2. COMPLEX REPRESENTATION

3

4

X

Y

(3,4)

3

4

R

I

3 4 j+

θ θ

(a) (b)

Figure A.2: a. A point is space on a Cartesian diagram. b. Plotting a complex function on a complex
plane.

Answer: It is same as multiplying by – j.

x
j
×

j
j
=

j x
−1
= − j x .

This is essentially the concept of complex numbers. Complex numbers often thought of
as “complicated numbers” follow all of the common rules of mathematics. Perhaps a better
name for complex numbers would have been 2D numbers. To further complicate matters,
the axes, which were called X and Y in Cartesian mathematics are now called respectively
Real and Imaginary. Why so? Is the quantity j3 any less real than 3? This semantic confusion
is the unfortunate result of the naming convention of complex numbers and helps to make
them confusing, complicated and of course complex.

Now let’s compare how a number is represented in the complex plane.

Plot a complex number, 3+ j4. In a Cartesian plot we have the usual X −Y axes and we
write this number as (3,4) indicating 3 units on the X -axis and 4 units in the Y -axis. We can
represent this number in a complex plane in two ways. One form is called the rectangular
form and is given as

z = x + j y

The part with the j is called the imaginary part (although of course it is a real number) and
the one without is called the real part. Here 3 is the Real part of z and 4 is the Imaginary
part. Both are real numbers of course. Note when we refer to the imaginary part, we do not
include j. The symbol j is there to remind you that this part (the imaginary part) lies on a
different axis.

Re(z) = x

Im(z) = y
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Alternate form of a complex number is the polar form.

z = M∠θ

where M is the magnitude and θ its angle with the real axis.

The polar form which looks like a vector and in essence it is, is called a Phasor in signal
processing. This idea comes from circuit analysis and is very useful is that realm. We also
use it in signal processing but it seems to cause some conceptual difficulty. Mainly because,
unlike in circuit analysis, in signal processing time is important. We are interested in signals
in time domain and the phasor which is a time-less concept is confusing. The phase as the
term is used in signal processing is kind of the initial value of phase, where it is an angle in
vector terminology.

Question: If z = Ae jωt then what is its rectangular form?

Answer: z = Acosωt + jAsinωt. We just substituted the Euler’s equation for the complex
exponential e jωt . Think of e jωt as a shorthand functional notation for the expression cosωt+
j sinωt .The real and imaginary parts of z are given by

Re(z) = Acosωt

Im(z) = Asinωt.

Converting forms

Rule:

1. Given a rectangular form z = x + j y then its polar form is equal to

M∠θ =

(

p

x2 + y2∠ tan−1 y
x if x ≥ 0

p

x2 + y2∠
�

tan−1 y
x +π

�

if x < 0

2. Given a polar form M∠θ then its rectangular form is given by

x + j y = M cosθ + jM sinθ

Example 2.11. Convert z = 5∠.927 to rectangular form

Re(z) = 5cos(.927) = 3

Im(z) = 5sin(.927) = 4

⇒ z = 3+ j4
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Example 2.12. Convert z = −1− j to polar form

M =
Æ

(−1)2 + (−1)2 =
p

2

θ = arctan
y
x
+π, since x < 0

= arctan
−1
−1
+π=

3
4
π

⇒ z =
p

2∠
3
4
π.

Example 2.13. Convert z = 1+ j to polar form

M =
Æ

(1)2 + (1)2 =
p

2

θ = arctan
y
x

, since x > 0

= arctan
1
1

=
1
4
π

⇒ z =
p

2∠π/4.

Adding and Multiplying
Add in rectangular form, multiply in polar. Its easier this way. Rule

1. Given z1 = a+ j b and z2 = c + jd then z1 + z2 = (a+ c) + j(b+ d).
2. Given z1 = M1∠θ1 and z2 = M2∠θ2, then z1 · z2 = M1M2∠(θ1 + θ2).

Example 2.14. Add z2 =
p

2∠.785 and z2 = 5∠.927.

Convert both to rectangular form

z1 = 1+ j and z2 = 3+ j4

⇒ z3 = (1+ 3) + j(1+ 4) = 4+ j5.

Example 2.15. Multiply z1 = 1+ j and z2 = 3+ j4.

First convert to polar form and then multiply. Although multiplying these two complex
numbers in rectangular format looks easy, in general that is not the case. Polar form is better
for multiplication and division.

z1 · z2 =
p

2∠.785× 5∠.927= 5
p

2∠1.71

Example 2.16. Divide z1 = 1+ j and z2 = 3+ j4.

z1

z2
=
p

2∠.785
5∠.927

=
5
p

2
∠.142
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Conjugation

The conjugate for a complex number z, is given by z∗ = x− j y . For a complex exponen-
tial e jωt is the complex conjugate of e− jωt . In polar format the complex conjugate is same
phasor but rotating in the opposite direction.

Rule: If z = M∠θ , then z∗ = M∠− θ .

Useful properties of complex conjugates

|z|2 = zz∗

This relationship is used to compute the power of the signal. The magnitude of the signal can
be computed by half the sum of the signal and its complex conjugate. Note the imaginary
part cancels out in this sum.

|z|=
1
2

�

z + z∗
�

.
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