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4 Continuous-time
Fourier Transform (CTFT) of
aperiodic and periodic signals

Harry Nyquist
February 7, 1889 - April 4, 1976

Harry Nyquist, was a Swedish born American electronic engineer who made important
contributions to communication theory. He entered the University of North Dakota in 1912
and received B.S. and M.S. degrees in electrical engineering in 1914 and 1915, respectively. He
received a Ph.D. in physics at Yale University in 1917. His early theoretical work on determining
the bandwidth requirements for transmitting information laid the foundations for later advances
by Claude Shannon, which led to the development of information theory. In particular, Nyquist
determined that the number of independent pulses that could be put through a telegraph channel
per unit time is limited to twice the bandwidth of the channel. This rule is essentially a dual of
what is now known as the Nyquist-Shannon sampling theorem. — From Wikipedia
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

Applying Fourier series to aperiodic signals

In previous chapters we discussed the Fourier series as it applies to the representation
of continuous and discrete signals. We discussed the concept of harmonic sinusoids as basis
functions, first the trigonometric version of sinusoids and then the complex exponentials as
a more compact form for representing a signal. The analysis signal is “projected” on to these
basis signals, and the “quantity” of each basis function is interpreted as spectral content along
a frequency line.

Fourier series discussions assume that the signal of interest is periodic. But a majority
of signals we encounter in signal processing are not periodic. Even those that we think are
periodic are not really so. Then we have many signals which are bunch of random bits with
no pretense of periodicity. This is the real world of signals and Fourier series comes up short
for these types of signals. This was of course noticed right away by the contemporaries of
Fourier when he first published his ideas is 1822. Fourier series is great for periodic signals
but how about stand-alone non-periodic, also called aperiodic signals like this one?

N

Time, t

Figure 4.1: Can we compute the Fourier series coefficients of this aperiodic signal?

Taking some liberty with history, Fourier, I am sure was quite disappointed when he
received a very unenthusiastic response to his work upon first publishing it. He was denied
membership into the French Academy as the work was not considered rigorous enough. His
friends and foes, who are now as famous as he is, (Laplace, Lagrange etc.) objected to his
overreaching original conclusion about the Fourier series that it can represent any signal.
They correctly guessed that series representation would not work universally, such as for
exponential signals as well as for signals that are not periodic. Baron Fourier, disappointed
but not discouraged, came back 20 years later with something even better, the Fourier trans-
form. (If you are having a little bit of difficulty understanding all this on first reading, this is
forgivable. Even Fourier took 20 years to develop it.)

Extending the period to infinity

In this chapter we will look at the mathematical trick Fourier used to modify the Fourier
series such that it could be applied to signals that are not strictly periodic, or are transient.
Take the signal in Fig. 4.1. Let’s say that a little signal, as shown has been collected and the
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

data shows no periodicity. Being engineers, we want to compute its spectrum using Fourier
analysis, even though we have been told that the signal must be periodic. What to do?

Well, we can pretend that the signal in Fig. 4.1 is actually a periodic signal and we
are only seeing one period. In Fig. 4.2(a) we show this signal repeating with a period of 5
seconds. Of course, we just made up that period. We truly have no idea what the period of
this signal is, or if it even has one.
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<«—————> Bigger period
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Figure 4.2: Going from periodic to aperiodic signal by extending the period.

Since 5 seconds is an assumed number anyway, let’s just increase it some more by push-
ing these assumed copies out, increasing the time in-between. We can indeed keep doing this
such that the zeros go on forever on each side and effectively the period becomes infinitely
long. The signal is now just by itself with zeros extending to infinity on each side. We declare
that this is now a periodic signal but with a period extending to co. We have turned an ape-
riodic signal into a periodic signal with this assumption. We can apply the Fourier analysis
to this extended signal because it is periodic. Mathematically we have let the period T go to
infinity so that the assumed copies of the little signal move so far apart that we see no hide
nor hair of them. The single piece of the signal is then essentially part of a periodic signal
which we can not see. The copies of the signal in Fig. 4.2(a) are of course fake, they are not
really there. But with this assumption, the signal becomes periodic in a mathematical sense,
and we can compute its Fourier series coefficients (FSC), by setting T = oo.

This conceptual trick is needed because a signal must be periodic for Fourier series
representation to be valid. When we have a signal that appears aperiodic, we can assume
that the observed signal is part of a periodic series, although with such an infinitely long
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

period that we don’t even see any other data points. The Fourier series can be used for the
spectral analysis of an aperiodic signals by this assumption.

In Fig. 4.3(a) we show a pulse train with period T,,. The Fourier series coefficients of the
pulse train are plotted next to it (See Example 2.10). Note that as the pulses move further
apart in (b) and (c), the spectral lines or the harmonics are moving closer together.
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Figure 4.3: Take the pulse train in (a), as we increase the period, i.e., add more space between the
pulses, the fundamental frequency gets smaller, which makes the spectral lines move closer together as in
(c). In the limiting case, where the period goes to 0o, the spectrum would become continuous.

Continuous-Time Fourier Transform (CTFT)

It was probably this same observation that led Fourier to the Fourier transform. We can
indeed apply Fourier series analysis to an aperiodic signal by assuming that the period of
an arbitrary aperiodic signal is very long and hence we are seeing only one period of the
signal. The aperiodic data represents one period of a presumed periodic signal, ¥(t). But
if the period is infinitely long, then the fundamental frequency defined as the inverse of the
period becomes infinitely small. The harmonics are still integer multiples of this infinitely
small fundamental frequency but they are so very close to each other that they approach a
continuous function of frequency.

We will now go through the math to show how Fourier transform (FT) is directly de-
rived from the Fourier series coefficients (FSC). Like much of the math in this book, it is
not complicated, only confusing. However once you have clearly understood the concepts of
fundamental frequency, period, and the harmonic frequencies, the rest gets easier.
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

After we discuss the Continuous-time Fourier Transform (CTFT), we will then look at the
Discrete-Time Fourier Transform (DTFT) in Chapter 5. Truth is we are much more interested
in a yet another transform called the Discrete Fourier Transform (DFT), but it is much easier
to understand DFT if we start with the continuous-time case first. So although you will come
across CTFT only in books and school, it is essential for the full understanding of this topic.

In Eq. (4.1) we give the expression for the Fourier series coefficients of a continuous-
time signal from chapter 2.

To/2
Cy x(t)e kot dt (4.1)

To —To/2

To apply this to the aperiodic case, we let T, go to co. In Eq. (4.1) as the period gets
longer, we are faced with division by infinity. Putting the period in form of frequency avoids
this problem. Then we only have to worry about multiplication by zero. We write the period

as a function of the frequency.
1 Wy
- = (4.2)
Ty, 2n
If T, is allowed to go to infinity, then w is becoming tiny. In this case, we write frequency
wo as Aw instead, to show that it is changing and getting smaller. Now we write the period
in the limit as 1 A
w
lim — ~— (4.3)
Tymoo Ty 27
We rewrite Eq. (4.1) by substituting Eq. (4.3).
To/2
x(t)e Tkt g (4.9
—To/2

Aw

C,=—
k 21

But now as T, goes to infinity, Aw approaches zero, and the whole expression goes to
zero. To get around this problem, we start with the time-domain Fourier series representation
of x(t), as given by

x()= Y Gt (4.5)
k=—00

Now substitute Eq. (4.4) into Eq. (4.5), the value of C; becomes

(o) To/2
A 0 . ;
x(t) = Z { lim =% x(t)e_l‘”tdt}ejk“)ot (4.6)
ke (Tom00 270 | 4 )
G
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

In this expression, the summation can be replaced by an integral because we are now
multiplying the coefficients (the middle part) with dt, sort of like computing an infinitesimal
area. We change Aw to dw, and kw, to w, the continuous frequency. We also move the
factor 1/2m outside. Now we rewrite Eq. (4.6) incorporating these ideas as

x(r):%J {J x(t)e_j“’tdt}ej‘”tdw 4.7)

oo oo

We give the underlined part a special name, calling it the Fourier transform and refer to
it by X(w). Substituting this nomenclature in (4.7) for the underlined part, we write it in a
new form. This expression is called the Inverse Fourier transform and is equivalent to the
Fourier series representation or the synthesis equation.

x(t)= %J X(w)e/®tdw (4.8)

—00

The Continuous-Time Fourier Transform (CTFT) is defined as the underlined part in
(4.8) and is equal to

X(w)= f x(t)e @t (4.9)

—0Q

In referring to the Fourier transform, the following terminology is often used.

If x(t) is a time function, then its Fourier transform is written with a capital letter. Such
as for time-domain signal, y(t) the CTFT would be written as Y(w). These two terms are
called a transform pair and often written with a bidirectional arrow in between them such
as here.

) o Y oy < Y(w)

(t) o Clo) ) <= c(w)

The symbol F{-} is also used to denote the Fourier transform. The symbol § '{-} is used
to denote the inverse transform such that

Y(w)=F{y(6)}
g(t) =F {G(w)}

The CTFT is generally a complex function. We can plot the real and the imaginary parts
of the transform, or we can compute and plot the magnitude, referred to as |X(w)| and
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

the phase, referred to as ZX(w). The magnitude is computed by taking the square root of
the product X(w)X*(w) and phase by the arctan of the ratio of the imaginary and the real
parts. We can also write the transform this way, separating out the magnitude and the phase
spectrums.

X(w) = X ()] X

Here

e Magnitude Spectrum: |X(w)|
* Phase Spectrum: ZX(w).

Comparing Fourier series coefficients and the Fourier transform

Fourier Decomposition of Signals

Continuous ]?iscrete
Time (CT) T1n}e (DT)
signals signals

Fourier Series Fourier Fourier Series Fourier
Coeffcients Transform Coeffcients Transform
(FSO) (CTFT) (FSC) (CTFT)
Periodic Non-periodic Periodic Non-periodic

Figure 4.4: Fourier series and the Fourier transform

We can use the Fourier series analysis with both discrete and continuous-time signals
as long as they are periodic. When a signal is aperiodic, the premium tool of analysis is the
Fourier transform. Just as Fourier series can be applied to continuous and discrete signals,
the Fourier transform can also be applied to continuous and discrete signals. The discrete
version of the Fourier transform is called the DTFT and we will discuss it in the next chapter.

Let’s compare the continuous-time Fourier transform (CTFT) with the Fourier series
coefficient (FSC) equations. The FSC and the CTFT are given as:

Ty/2
FSC: C, = — x(t)e Tkt g
0 To/2 (4.10)
CTFT: X(w) = J x(t)e@tde
—0oQ

When we compare FSC with the CTFT expressions, we see that they are nearly the same
except the period T in the front of FSC is missing from the latter. Where did it go and does
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

it have any significance? We started development of CTFT (see Fig. 4.2) by stretching the
period and allowing it to go to infinity. We also equated 1/T, to dw/27 which was then
associated with the time-domain formula or the inverse transform (notice, it is not included
in the center part of Eq. (4.8), which became the Fourier transform.). So it moved to the
inverse transform along with the 27 factor.

Notice now the difference between the time-domain signal representation as given by
Fourier series and the Fourier transform.

oo
FSC:x(f)= Y. Celkeot
k=—co (4.11)

o0

CTFT: x(t) = if X(w)e!®dw
27

—0Q

In Fourier series representation, to determine the quantity of a particular harmonic, we
multiplied the signal by that harmonic, integrated the product over one period and divided
the result by the fundamental period T,. This gave us the amplitude of that harmonic. In
fact we did that for all harmonics, each divided by T,. But here in Fourier transform, we
do not divide by the period because we don’t know what it is. We assumed that it is ©o,
but we would not want to divide by that either. So we just ignore it and hence we are not
determining the signal’s true amplitude. We are computing a measure of the content but it is
not the actual content. And since we are missing the same term from all coefficients, we say
that, the Fourier transform determines relative amplitudes. But often that is good enough.
All we are really interested in are the relative levels of harmonic signal powers. The true
content of the harmonic signals in most cases is not important. Fourier spectrum gives us
the relative distribution of power among the various harmonic frequencies in the signal. In
practice, we often normalize the maximum power to 0 dB such that the relative levels are
consistent among all frequency components.

CTFT of important aperiodic functions

Now we will take a look at some important aperiodic signals and their transforms, also
called transform pairs. In the process, we will use the properties listed in Table 4.1. which can
be used to compute the Fourier transform of many functions. The properties listed in Table
4.1 can be used to simplify computation of many transforms. We won'’t prove these properties
but will refer to them as needed for the following important examples. These examples cover
the fundamental functions that come up both in workplace DSP as well in textbooks, so they
are worth understanding and memorizing. We will use the properties listed in Table 4.1
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

to compute the CTFTs in the subsequent examples in this and the following chapters. All
following examples assume that the signal is aperiodic and is specified in continuous-time.
The Fourier transform in these examples is referred to as CTFT.

Table 4.1: Important CTFT properties

Zero value X(0)= foo x(t)dt

—o0
Duality If x(t) e X(w), then X(t) < x(w)
Linearity ax(t)+by(t) e aX(w)+ bY(w)
Time Shift x(t —tg) e e /X (w)
Frequency Shift /@0t x(t) = X (w — wy)
Time Reversal x(—t) & X(—w)
Time expansion or contraction x(at) e« HX ( ) a#0.
Derivative %x(t) — jwX(w)
Convolution in time x(t)xh(t) e X(w)H(w)
Multiplication in Time x()y(t) = X(w)*Y(w)
Power Theorem foo lx(6)?dt = ifoo 1X(w)>dw

CTFT of an impulse function

Example 4.1.

x(t) =6(t) (4.12)

This is the most important function in signal processing. The delta function can be con-
sidered a continuous (Dirac delta function) or a discrete function (Kronecker delta function),
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

but here we treat it as a continuous function.

X(w)= J x(t)e/@tde

—00

=f S(t)e/tdt

—0Q0
— e—]w(tzO)

=1

We use the CTFT expression in Eq. (4.9) and substitute delta function for function x(t).
In the third step, we used the sifting property of the delta function. The sifting property states
that the integral of the product of a continuous-time signal with a delta function isolates the
value of the signal at the location of the delta function per Eq. (4.13).

f 6(t —a)x(t)dt = x(a). (4.13)

—0Q

If a = 0, then the isolated value of the complex exponential is 1.0, at the origin. The
integrand becomes a constant, so it is no longer a function of frequency. Hence CTFT is
constant for all frequencies. We get a flat line for the spectrum of the delta function.

The delta function was defined by Dirac as a summation of an infinite number of expo-
nentials.
1 (%
5(t)= —J e/“tdt (4.14)
21 J_ o

The general version of (4.14) with a shift is given as

o0
S(t—a)= % J ello—at gy (4.15)

—0Q

In its transform, we see a spectrum that encompasses whole of the frequency space to
infinity, hence a flat line from —oo to +©0. In fact when in Chapter 1, Fig. (1.9), we added a
whole bunch of sinusoids, this is just what we were trying to get at. This is a very important
property to know and understand. It encompasses much depth and if you understand it, the
whole of signal processing becomes easier.

Now if the CTFT or X(w) = 1 then what is the inverse of this CTFT? We want to find
the time-domain function that produced this function in frequency domain. It ought to be a

116



CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

(a) Impulse of Amplitude 1 ) 1 x(6) = 8(0)

Y

0 Time, t
(b) Its CTFT is a constant

Y

0 Frequency, o

Figure 4.5: CTFT of a delta function located at time O is a constant.

delta function but let’s see if we get that. Using the inverse CTFT Eq. (4.8), we write
x(6) =31}
Y oo

=06(t)

1-e/°tdt

Notice that we already showed that the summation of complex exponential leads to a
delta function. Substituting in the second step the definition of the delta function from Eq.
(4.14), we get the function back. A perfect round trip. The CTFT of a delta function is 1
in frequency-domain. The inverse CTFT of 1 in frequency-domain is the delta function in
time-domain.

CTFT Inverse CTFT

o(t) 1 56(t)

CTFT of a constant
Example 4.2. What is the Fourier transform of the time-domain signal, x(t) = 1.

This case is different from Example 4.1. Here the time-domain signal is a constant and
not a delta function. Using (4.9), we write the CTFT as

X(w)= J x(t)e@tde

—0Q

o0
= J 1-e7 /@t dt
—0Q0
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

Using Eq. (4.14) for the expression for the delta function, we get the CTFT of the

constant 1 as
X(w)=216(w)

It can be a little confusing as to why there is this 27 factor, but it is coming from the
definition of the delta function, (4.14).

(a) A constant function 1 x(t)=1

(b) Its CTFT is an impulse

X(w) =2mé(w) @ 27

Y

€

Frequency,

Figure 4.6: CTFT of a constant function which shows reciprocal relationship with example 4.1.

If the time-domain signal is a constant, then its Fourier transform is the delta function
and if we were to do the inverse transform of 26 (w) we would get back x(t) = 1. We can

write this pair as
1—216(w)

Note in example 4.1, we had this pair 6(t) «= 1. Which is confusingly similar but is not

the same thing.

CTFT of a sinusoid

Example 4.3. Since a sinusoid is a periodic function, we will select only one period of it to
make it aperiodic. Here we have just a piece of a sinusoid. We make no assumption about
what happens outside the selected time frame. The cosine wave shown in Fig. 4.7 has a
frequency of 3 Hz, hence you see one period of time which is 0.33 s.

cos(w, t)

Amplitude

-1F ) ) | 1 L )
0 0.05 0.1 0.15 0.30.2 0.25
Time, ¢t

Figure 4.7: By limiting the duration of a sinusoid, we effectively make it an aperiodic signal.
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

We can compute the CTFT of this little piece of cosine as
X(w) = F{cos(wt)}

1
:J —(e/®ot + eIwot el

o2
oo o
— | Leorerge [ Llgiteo-edg,
2 2

This is the summation of two integrals. When we compare these to the Fourier transform
of the delta function we see that they are similar. Applying the time-shift property from Table
4.1, we can show that the integrals are the Fourier transforms of shifted delta functions, from
their definition in Eq. (4.15). The amount of shift in time is equal to the frequency of the
cosine. From Eq. (4.14) we write the CTFT of this cosine piece as

X(w)=md(w+ wg) + 16 (w — wy) (4.16)

The only difference we see between the CTFT of a cosine wave and FSC we see in
Example 2.1 is the scaling. In the case of FSC, we get two delta functions of amplitude 1/2
for each or a total of 1. The amplitude of the CTFT is however 7 , which 27 times the
amplitude of the FSC.

By similarity, the Fourier transform of a sine is given by
X(w) =F{sin(wgt)} = jmd(w + wy) — jnd(w — wg) (4.17)

Note the presence of j in front just means that this transform is in the Imaginary plane.

CTFT of a complex exponential

Example 4.4. Now we calculate the CTFT of the very important function, the complex ex-
ponential.
x(t) = 7“0t = cos(wyt) + j sin(wot)

A CE is really two functions, one a cosine of frequency w, and the other a sine of the
same frequency, both orthogonal to each other.

We have already calculated the CTFT of a sine and a cosine in (4.15) given by

F{cos(wot)} = 6 (w — wo} + o (w + wg)
F{sin(wyt)} = —j(né(w —wg)— o (w+ wo))
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(a) Spectrum of a cosine

.| T T A

o

E - -

a0 L2 - . L 2 L2 L2 L2 L 2 L L

g —w,o wo

< - -
71 C i i i i i n

-6 -4 -2 0 2 4 w 6
(b) Spectrum of a sine
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Figure 4.8: CTFT of the cosine and the sine function.
Had we plotted the magnitude, both plots would look identical.

By the linearity principle, we write the Fourier transform of the CE keeping the sine and
cosine separate.

F{e/®0'} = F{cos(wot)} + jF{sin(wyt)}
=no(w—wy) + 1o (w+ a)02+ (—j)(né(w —wg)— o (w+ wo))

;(; sin
o o (4.18)
=710(w—wy) —j O (w — wy) + O (w + wy) + j*mo (w + wy)
a‘d,d cancel
=216 (w — wyp)

In DSP we call the real and imaginary axes the I and Q channels. These come from the
terms In-phase and Quadrature. A sine and cosine wave can exist together on a line and not
interfere because they are orthogonal to each other. This is because they are 90° degrees
out of phase, or said to be in quadrature. In baseband and in hardware it is much faster to
take a signal, decompose it in these two orthogonal components and then do separate signal
processing on each at half the rate, leading to speed improvement. In the receiver there is a
local oscillator that matches the cosine portion of the signal. Therefore the cosine is called
In-phase and the sine wave is in Quadrature.

In Cartesian sense, I and Q are on the x and y axes. When a number is purely on one
of these axes, it has no component in the other. Any number in between can be projected on
both the x and y axis. The projections are the x and y components. Now just think of x as
the I axis and y as the Q axis. And instead of a scalar, think of a signal. Now the projections
are the “amount” of cosine on the I axis and “amount” of sine on the Q axis. I axis represents
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1 (a) Re(e") = cos(wyt) (c) X(w)=06(w—w,)+6(w+w,)
1
AW
& o 0¢-ooe I ----- I oo
SAVIRLY.
<
0.2 0.4 0.6 -5 0 5
) (b) Im(e™") = sin(w,t) | (@D X(@) = j[8w—w) + 8w+ w,)]
[\
20 0 4
AIRVIRV
<
1o 02 04 06 175 0 5
Time, ¢t Frequency, w

Figure 4.9: The CTFT of a complex exponential.
The Real part is a cosine, hence the spectrum looks like Fig. 4.8(a) and the Imaginary part is a sine, and
hence this plot is exactly the same as Fig. 4.8(b).

(@) Re A

F . From sine
rom cosine Rotated up by +j
—“ T T’V 5
S >
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Cancels Adds
>
— W W Frequency
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Figure 4.10: The asymmetrical spectrum of a complex exponential.

the cosine projection and Q axis the sine projection of a signal. When multiplying by j, the
phase changes by 90°. This is same as moving from one axis to the other axis. Unfortunately
to add to the confusion, the I in this terminology corresponds to the real axis, and Q to the
imaginary axis!

Now consider an Inverse-CTFT (also referred to as taking the iCTFT) that consists of a
single impulse located at frequency «w; written as

X(w) = 5(w— ;)
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CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

We want to know what time-domain function produced this spectrum. We take the iCTFT.

x(t) = §{6(w — 1)}
= % f_oo 5(w—wq)e’* dw

— iejwlt

21

The result is a complex exponential of frequency w; in time-domain. Because this is
a complex signal, it has a non-symmetrical frequency response which consists of just one
impulse located at the CE’s frequency. In Fig. 4.10, we see why it is one sided. The reason
is that a cancellation occurs on the negative side and an addition on the positive side of the
frequency axis. The component from the sine rotates up to add to cosine part on the positive
and rotates down on the negative side to cancel the cosine portion. This of course is coming
from the Euler’s equation.

Here we write the two important CTFT pairs. The CTFT of a CE is one-sided, an impulse
at its frequency. (The CTFT of a complex function comes out to be real.)

ejwot (_)27.55(0)_(00) and e_jwot (—)27‘[5(0)4‘(1)0)-

Time-shifting a function

What is the CTFT of a delta function shifted by time t;,? We can construct many sig-
nals as summation of time-shifted delta functions. This case is very important to further
understanding of discrete signals.

We can determine the response of a delayed signal by noting the time shift property
in Table 4.1. The property says that if a function is delayed by a time period of ¢, then in
frequency domain, the original response of the un-delayed signal is multiplied by a CE of
frequency e/“%. This is given by the product of X () and e/“%, where X(w) is the Fourier
transform of the un-delayed signal. Look carefully at this signal, e/®%. Note that time is
constant and hence this is a frequency-domain signal, with frequency as the variable.

We write the shifted signal as x(t) = 6(t — t). Calculate the Fourier transform of this
function from Eq. (4.9) as
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X(w)= f x(t)e /@tde

—0Q

o
:f S(t—ty)e/@tde
—00

— e_jwtO

What we get in frequency domain for this delayed delta function is a CE. This CE has the
form e7“% and might be confusing. That’s because we are not used to seeing exponentials
in frequency domain. Now intuitively speaking, if you have a signal and you move it from
one “place” to another, does anything change about the signal? Similarly, delaying a signal
does not change its amplitude (the main parameter by which we characterize signals.) Its
frequency also does not change, but what does change is its phase. If a sine wave is running
and we arrive to look at it at time t after it has started, we are going to see an instantaneous
phase at that time which will be different depending on when we arrive on the scene. That’s
all a time shift does.

We can show this by computing the magnitude and the phase of the spectrum of a
delayed signal. Here we write the magnitude of the delayed signal as the magnitude of the
product of the original spectrum and the CE e/®%,

Mag {3 {x(t —to)}} = |e 7" X (e))]
= [e77%]|x ()]

We compute the magnitude of the CE first. Keep in mind that this is not a time-domain
signal. The variable is frequency, and not time. The CE is given in the Euler form as

/@t = cos(wty) + jsin(wty)

We compute the magnitude of this signal by

|e_j‘°t0\ = |cos(wt0) +jsin(a>t0)|
= cos?(wty) + sin(wty)
=1

Being a sinusoid, even if a complex one in frequency-domain, its magnitude is still 1.0 be-
cause it is after all composed of two sinusoids. Then we compute the magnitude of the shifted
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function, which is the product of the un-delayed signal magnitude and the magnitude of the
CE.

Mag{F{x(t —to)}} = [e /"X (w))|
=1-[X(w)|

=/ X(w)X*(w)

- [x(e)

The magnitude of the delayed signal is same as that of the un-delayed signal. Delay does not
change the magnitude. From the same equation, we see that the magnitude is a function of
the same frequency variable and has not been modified by the process. So what did change
by shifting the signal in time? Now we look at the phase. The phase delay was

— Im{X(w)}

=ta Y
Pundelayed Re{X(w)}

The phase response of the delayed signal is given by

_; Im{e/®bX (w)}
Re{ei®toX(w)}

_; sin(wty) Im{X(w)}

T cos(wty) Re(X()}
—_——

<i)delayed =ta

function of ¢,

Since this coefficient is a function of the delay, the phase has indeed changed from the
un-delayed case. The conclusion we draw is that delaying a signal changes its phase response,
or equivalently multiplication by a CE in the frequency domain changes the phase of a signal.
This property is used in simulation to add phase shifts to a signal.

In general, if we shift a signal by time t,, the Fourier transform of the signal can be
calculated by the time shift property as

x(t —tg) <= /X (w) (4.19)

In Fig. 4.11 we show the effect of time-delay. In (a), we have a signal with an arbitrary
spectrum centered at frequency of 2 Hz. We don’t actually show this signal, only its Fourier
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Figure 4.11: Signal delay causes only the phase response to change. In (a) we see an arbitrary signal
delayed by 2 seconds and in (b), it has been delayed by 4 seconds in (e). Both cases have the same
magnitude but the phase is different.

transform, with x-axis being frequency. You only need to note its shape and center location
on the frequency axis. Now we delay this signal by 2 seconds (we don’t know what the signal
is, but that does not matter.) and want to see what happened to the spectrum.

In (b) we draw the CE e/®t with to = 2 (both sine and cosine are shown). In (c), we
see the effect of multiplying this CE by the spectrum in (a). The magnitude is unchanged.
But when we look at (d) we see the phase. Since we do not know what the previous phase
was, no statement can be made about it yet. Now examine the second column. In this case
the signal is delayed by 4 seconds. Once again in (g) we see no change in magnitude but we
see that phase in (h) has indeed changed from pervious case in (d).

Duality with frequency shift

If a signal is shifted in time, the response changes for phase but not for frequency. Now
what if we shift the spectrum by frequency such as X(w) vs. X(w — w), i.e. the response is
to be shifted by a constant frequency shift of w,. We can do this by using the frequency shift
property. The CTFT of the frequency-shifted signal changes as

X(w—wg) <= e/t x(t) (4.20)

If we multiply a time-domain signal by a CE of a desired frequency, the result is a shifted
frequency response by the new frequency.
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e/t x (1)} zf e/t x()e I°tdt
:J«oo x(t)e—j(w—wo)fdt (4.21)
=X(w— wg).

Neither the frequency nor the time shifts change the magnitude of the spectrum. The
only thing that changes is the phase. The frequency shift property is also called the modula-
tion property. We think of modulation as multiplying a signal by a carrier and in-fact if you
look at Eq. (4.20), that is exactly what we are doing. The CE can be thought of as the carrier
signal, a complex sinusoid of a single carrier frequency. A time-domain signal multiplied by
a such a CE, e/®o! results in the signal transferring (or upconverted) to the carrier frequency
without change in its amplitude.

Convolution property

The most important result from Fourier transform is the convolution property. In fact
Fourier transform is often used to perform convolution in hardware instead of doing convo-
lution in time-domain. The property is given by

o0

x(t)*h(t) =J x(t)h(t—7)d~T. (4.22)

—0Q
In time-domain, convolution is a resource-heavy computation. Calculating integrals is
more costly in terms of time than multiplication. But convolution can be done using the
Fourier transform convolution property. The convolution property states:

x(t)*xh(t) < X(w)H(w) (4.23)

This says that the convolution of two signals can be computed by multiplying their in-
dividual Fourier transforms and then taking the inverse transform of the product. In many
cases this is simpler to do. We can prove this as follows. We will write the time-domain
expression for the convolution and then take its Fourier transform. Yes, it does look messy
and requires fancy calculus.

F{x(t)xh(t)} = S{ J x(t)h(t— T)dT}

=J J x(T)h(t —7)dre7tdt

126



CHAPTER 4. CONTINUOUS-TIME FOURIER TRANSFORM

Now we interchange the order of integration to get this from

S{x(t)*h(t)}zf X(T)(J h(t—T)e_j‘*’tdt)dT

—0Q —0Q

We make a variable change by setting u = t — 7, hence we get

g{x(t)*h(t)}ZJ x(%’)(f h(u)e_j“’(“”)du)d’r

—00 —00

This can be written as

{S’{x(t)*h(t)}zj x(’r)(J h(u)e_j‘“”e_jmdu)df

—0Q —00

Now we move the e 7“7 term out of the inner integral because, it is not function of u,
to get the desired result and complete the convolution property proof.

g{x(t)*h(t)} = (f X(T)e_ijdT)(J h(u)e‘j””du)
=X(w)H(w)

The duality property of Fourier transform then implies that if we multiply two signals
in time-domain, then the Fourier transform of their product would be equal to convolution
of the two transforms.

x(t)h(t) e %X(w)*H(w) (4.24)

This is an efficient way to compute convolution. Convolution can be hard to visualize.
The one way to think of it is as smearing or a smoothing process. The convolution process
produces the smoothed version of one of the signals as we can see in Fig. 4.12.

CTFT of a Gaussian function

Example 4.5. Now we examine the CTFT of a really unique and useful function, the Gaus-
sian. The zero-mean Gaussian function is given by

x(t) = 1 —t/20?)

ov2m
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Figure 4.12: (a) The convolution of signals x(t) and y(t) in (c) is done using Fourier transform. In
each case the result is smoother than either of the original signals. Hence convolution can be thought of
as a filter.

where o2 is the signal variance and o the standard deviation of the signal. The CTFT of this
function is very similar to the function itself.

oo

1 2 2 .

X(w)= —— e /0N jet gy
J_Oo ov2am

427942 i
t*/20 e IOt dt

1 oo
= — e
20721 J_o

This is a difficult integral to solve but fortunately smart people have already done it for
us. The result is

X(w)=———¢ 2

Since o is a constant, the shape of this curve is a function of the square of the frequency,
same as it is in time-domain where it is square of time. Hence it is often said that the CTFT
of the Gaussian function is same as itself, but what they really mean is that the shape is the
same. This property of the Gaussian function is very important in nearly all fields.

CTFT of a square pulse

Example 4.6. Now we examine the CTFT of a square pulse of amplitude 1, with a period of
T, centered at time zero. This case is different from the ones in Chapter 2 and Chapter 3 in
that here we have just a single solitary pulse. This is not a case of repeating square pulses
since in this section we are considering only aperiodic signals.
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Figure 4.13: Spectrum along the frequency line. A square pulse has a sinc-shaped spectrum. (a) its
time-domain shape, (b) its CTFT.

We write the CTFT as given by Eq. (4.9). The function has an amplitude of 1.0 for the
duration of the pulse. Hence integration takes place over half of the period.

X(w)= J x(t)e@tde

T/2
= J 1-e77@tdt
—7/2

i T/2
e jwt /

jw —7/2
1

— _._(e—ij/Z _ ejwr/z)
Jw

2 . (wﬂ:)
= —sin| —
w 2

X(w)= Tsinc(w—T) (4.25)
27

This can be simplified to

We see the spectrum plotted in Fig. 4.13 for t = 1s and t = 2s. Note that as the pulse
gets longer (or wider), its spectrum gets narrower. Since the sinc function is zero for all
values that are integer multiple of 27, the zero crossings occur whenever wt = k7, where k
is an even integer larger than 2. For t = 2 the zeros would occur at radial frequency equal to
m,27,.... If the pulse were to become infinitely wide, the CTFT would become an impulse
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function. If it were infinitely narrow as in Example 4.1, the frequency spectrum would be
flat.

Now assume that instead of the time-domain square pulse shown in Fig. 4.13, we are
given a frequency response that looks like a square pulse. The spectrum is flat from —W to
+W Hz. This can be imagined as the frequency response of an ideal filter. Notice, that in
the time-pulse case, we defined the half-width of the pulse as 7/2, but here we define the
half bandwidth by W and not by W /2. The reason is that in time-domain, when a pulse is
moved, its period is still 7. But bandwidth is designated as a positive quantity only. There
is no such thing as a negative bandwidth. In this case, the bandwidth of the signal (because
it is centered at 0 is said to be W Hz and not 2W Hz. However if this signal were moved to
a higher frequency such that the whole signal was in the positive frequency range, it would
be said to have a bandwidth of 2W Hz. This crazy definition gives rise to the concepts of
low-pass and band-pass bandwidths. Lowpass is centered at the origin so it has half the
bandwidth of bandpass.

(a) Sinc shape (b) Its CTFT

A

1 X(w)= v
(w) rect[zw}

Y&

-w 0 w

Frequency

Figure 4.14: Time-domain signal corresponding to the rectangular frequency response.

What time-domain signal produces a rectangular frequency response shown in Fig.
4.14? The frequency response is limited to a certain bandwidth.

1 |wlsw
X(w)=
0 |w|>W

We compute the time-domain signal by the inverse CTFT equation.

x(t)= %f X(w)e/®tdw

—0Q0
oo

= L 1-e/®dw
21 | o
1 ejwt

T 2m jt

w

-w
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Which can be simplified to
w . Wt
x(t) = —smc(—)

T T

Again we get a sinc function, but now in time-domain. This is the duality principle at
work. This is a very interesting case and of fundamental importance in communications. A
time-domain sinc shape has a very sharply defined response in the frequency-domain. But
a sinc function looks strange for a time-domain signal because it is of infinite length. But
because it is “well-behaved”, which means it crosses zeros at predicable points, we can use
it as a signal shape, at least in theory. In practice it is impossible to build a signal shape of
infinite time duration. An alternate shape with similar properties is the raised cosine, most
commonly used signal shape in communications.

The frequency spectrum shown in Fig. 4.14(b) is a very desirable frequency response.
We want the frequency response to be tightly constrained. The way to get this type of spec-
trum is to have a time-domain signal that is a sinc function. This is the dual of the first case,
where a square pulse produces a sinc frequency response.

In Fig. 4.15 we give some important Fourier transforms of non-periodic signals.

Fourier transform of periodic signals

Fourier transform came about so that the Fourier series could be made rigorously appli-
cable to aperiodic signals. The signals we examined in this chapter so far were all aperiodic,
even the cosine wave, which we limited to one period. Can we use the CTFT for a periodic
signal? Our intuition says that this should be the same as the Fourier series. Let’s see if that
is the case.

Take a periodic signal x(t) with fundamental frequency of w, = 27/ T, and write its FS
representation.

o
x(t) = Z Crel ot
k=—o00

Taking the CTFT of both sides of this equation, we get
X(@) =560} =§{ 3. G
k=—o0

We can move the coefficients out of the CTFT because they are not function of frequency.

They are just numbers.
o0

X(w)= ), G}

k=—o0
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Time-domain signal
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Figure 4.15: Response to a Sinc shaped time domain signal.
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The Fourier transform of the complex exponential e/“o! is a delta function located at the
frequency w, as we saw in Example 4.4. Making the substitution, we get

X(w)=21 D C&(w—kwp) (4.26)

k=—o0

What does this equation say? It says that the CTFT of a periodic signal is a sampled ver-
sion of the Fourier series coefficients. But the Fourier series coefficients are already discrete!
So the only thing the Fourier transform does is change the scale. The magnitude of the CTFT
of a periodic signal is 27t times bigger than those computed with FS that you see in front of
Eq. (4.26).

Important observation: The CTFT of an aperiodic signal is aperiodic but continuous whereas
the CTFT of a periodic signal is also aperiodic but discrete.

CTFT of a periodic square pulse train

Example 4.7. Now we examine the CTFT of the periodic square pulse. For the Fourier trans-
form of this periodic signal, we will use Eq. (4.26)

X(w)=2m Z Cir6(w —kwy)

k=—o00

The FSC of a periodic pulse train with duty cycle = 1/2 are computed in chapter 2 and
given as

1
Cr = Esinc(kn/Z)
We plot these Fourier series coefficients in Fig. 4.16.
To compute CTFT, we set wy = 1 and now we write the CTFT expression as

X(w)=21 Y G&(w—k(wy=1))

k=—00
The result is the sampled version of the Fourier series coefficients scaled by 27 (See
Example 2.10) which are of course themselves discrete.

What if the square pulse was not centered at O but shifted some amount. We can com-
pute the CTFT of this periodic function by applying the time shift property to the CTFT of
the un-shifted square wave.
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Figure 4.16: The periodic square wave with duty cycle of 0.5. (b) Its FSC and (c) its CTFT. Only the
scale is different.

This periodic function is same as Fig. 4.16 but is time-shifted. We can write it as
y(©)=x(t—1/2)

By the time-shift property, we can write the CTFT of this signal by multiplying the CTFT of
the un-shifted case by e/“*/2, Hence

Y(w) =X(w)el®/?
Which is -~
Y(w)= (27[ Z Ci6(w— k))ej“”/2
k=—o00

This time-shift has no effect on the shape of the response at all, just as we would expect.
Only the phase gets effected by the time shift.

The main reason we have a Fourier transform vs. the Fourier series representation and
its coefficients, is that the Fourier transform can be used for aperiodic signals. However
since in developing the Fourier transform we have let go of the concept of a period, the
results are useful in a relative sense only. The same happens when we try to manipulate
the Fourier transform for use with periodic signals. Fourier transform hence becomes not a
tool for accurately measuring the signal amplitudes as we might do in a scale, it becomes a
qualitative tool.
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Figure 4.17: A time-shifted square pulse train.

Summary of Chapter 4

In this chapter we looked at aperiodic signals and their frequency representations. The

FS concept is extended so that same analysis can be applied to aperiodic signals. In a manner
similar to computing the coefficients, we call the process of computing the “coefficients” of
aperiodic signal the Fourier transform. The spectrum of continuous signals using the Fourier
transform is continuous, where the Fourier transform of a periodic signal is discrete.

Terms used in this chapter:

Fourier Transform, FT

Continuous-time Fourier Transform, CTFT

Discrete-time Fourier Transform, DTFT

Transform pair - The signal in one domain and its Fourier transform in the other
domain are called a Fourier transform pair.

. It is not mathematically valid to compute Fourier series coefficients of an aperiodic
signal.

. Fourier transform is developed by assuming that the period becomes infinite.

. Where the spectrum of a periodic signal computed with the Fourier series is called the
coefficients, the spectrum for an aperiodic signal is called the Fourier transform.

. For continuous signals, it is called the CTFT and DTFT for discrete signals.

. The CTFSC are discrete where the CTFT of an aperiodic signal is continuous in the
frequency domain.

. CTFT is aperiodic just as is the CTFSC.
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7. The continuous-time Fourier transform is computed by

X(w)= f x(t)e@tde

—o0
1 (% .
x(t)= —f X(w)e’*'dw
21 |_ o

8. A function and its Fourier transform are called a Fourier transform pair.
x(t) e X(w)

9. The CTFT of a periodic signal is given by the expression

(o)
X(w)=21 D Ci8(w—kwp)
k=—0c0
10. The two representations, in time and frequency domain, CTFT and iCTFT are called a
transform pair.
11. The CTFT is nearly identical to CTFSC. The values of CTFT are a factor 27 greater
than the Fourier series coefficients calculated for the same signal and are sampled at
the frequency of the signal.

Questions

1. What s the conceptual difference between the Fourier series and the Fourier transform?
2. Why is the CTFT continuous? Why are the CTFSC coefficients discrete?
3. What is the CTFT of these impulse functions:
6(t—1),6(t—2),6(t—T).
4. Give the expression for the CTFT of a cosine and a sine. What is the main difference
between the two?

5. Given a sinusoid of frequency 5 Hz. What does its CTFT look like?

6. What is the difference between the Fourier transform (the magnitude) of a sine and a
cosine of equal amplitudes?

7. Whatis CTFT (amplitude) of these sinusoids: sin(—8007t), —cos(2507tt), 0.25sin(257t).

8. What is magnitude spectrum of these sinusoids?

9. What is the value of sin(5007t)5(t)?

10. If the FT of a signal is being multiplied by this CE: e(7"f) what is the resultant effect
in time domain?
(—j12xt)

11. We multiply a signal in time domain by this CE: e , what is the effect in frequency

domain on the FT of the signal?
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12.
13.
14.
15.

16.

17.
18.

19.
20.

21.

22.

23.
24.
25.
26.
27.
28.

The summation of complex exponentials represent what other function?

What is the value of cos(67t) x 6(t —4)?

What is the CTFT of the constant 7t?

A sinc function crosses first zero at 7t/B. What is its time domain equation? What does
the spectrum look like and what is its bandwidth?

A sinc function crosses first zero at t = 1, give its time domain equation? What is its
time domain equation? What does the spectrum look like and what is its bandwidth?
What is the CTFT of sin(57t) * 6(t —5)?

A signal of frequency 4 Hz is delayed by 10 seconds. By what CE do you multiply the
un-shifted CTFT to get the CTFT of the shifted signal?

Given x(t) =sinc(t / /pi), at what times does this function cross zeros?

The first zero-crossing of a sinc function occurs at time = B s; 0.5 s; 2 s. what is the
bandwidth of each of these three cases?

What is the width of the main lobe of the CTFT of a square pulse of widths: T, T,/2,
/2, and 3 s.

If the main lobe width of a sinc function (one sided) is equal to 7t/2, then how wide is
the square pulse in time?

What is the CTFT of an impulse train with period equal to 0.5 secs.

Convolution in time domain of two sequences represents what in frequency domain?
What is the Fourier transform of an impulse of amplitude 2 v in time domain?

If a signal is shifted by 2 seconds, what happens to its CTFT?

the CTFT of a periodic signal is continuous white the CTFSC is discrete, true or false?
If the CTFSC of a signal at a particular harmonic is equal to 1/2, then what is the value
obtained via CTFT at the same harmonic?
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