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Chapter 4 

 

Fourier Transform of continuous and discrete signals 
 

In previous chapters we discussed Fourier series (FS) as it applies to the representation of 

continuous and discrete signals. It introduced us to the concept of complex exponential 

signals that can be used as basis functions. The signal is then “projected” on these basis 

signals, and the “quantity” of each basis function is interpreted as spectrum along a 

frequency line.  The idea of spectrum has many names in the literature such as: gain, 

frequency response, rejection, magnitude, power spectrum, power spectral density etc. . 

They are all referring to this distribution of signal content over a certain frequency band.  

 

Because the basis set for Fourier analysis is discrete, the spectrums computed are also 

discrete.  Fourier series discussions however always assume that the signal under our 

microscope is periodic. But a majority of signals we encounter in signal processing are 

not periodic. Even those that we think are periodic, such as an EKG which looks periodic, 

are not really so. Each period is slightly different.  

 

Fourier, I am sure was pretty excited when he first came up with the idea of using Fourier 

series for all kinds of signal analysis, but unfortunately some of his contemporary jumped 

up and objected to his overreaching conclusion. They correctly guessed that series 

representation would not work for many signals, such as those that go off into space, like 

the tan function, the growing exponential and many others, including ones that have too 

many discontinuities and as well as a large class of signals that are not periodic.  Baron 

Fourier went home disappointed from his big meeting with the likes of Lagrange and 

Laplace, but came back 20 years later with something even better, called the Fourier 

transform. (So if you are having a little bit of difficulty understanding all this on first 

reading, this is forgivable. Even Fourier took 20 years to develop it.) 

 

In this chapter we will look at the mathematical trick Fourier used to extend the analysis 

to aperiodic signals. Take the signal in Fig. 4.1(a).  This is not a periodic signal. There is 

information only in a few samples in the middle. We want to compute its spectrum using 

Fourier analysis but we have been told that the signal must be periodic. What to do?  

 

In order to compute the Fourier coefficients of such a signal, we can assume that it is 

repeating by creating what is called a periodic extension, [ ]Nx k  with a squiggle over x to 

indicate that this is an extended version of the signal. This is shown in Fig. 4-1(b). We 

assume that the information signal (samples 8 to 12) repeat every 8 samples, or with N = 

8. Okay, now we can compute Fourier series coefficients (FSC) of this extended signal 

because it is periodic.  But this is not the signal we started with. So let’s just keep pushing 

these side copies out by increasing the space between the information samples. We can 
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keep doing this, such that the zeros go on forever on each side and effectively the period 

becomes infinitely long. The signal now has just the information part with zeros 

extending to infinity on each side. We declare, this is now a periodic signal with N =  . 

We have turned an aperiodic signal into a periodic signal by this assumption. And indeed 

this is perfectly valid. We can now apply the FS analysis to this extended signal.  

 

 

 

 

 
 

Figure 4.1 – Going from a periodic to a non-periodic signal 

 

Recall that we write the FS for a continuous signal in terms of its complex coefficients as 
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 And the coefficients nC are given by 

 0

/2
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T

C x t e dt
T

 (1.2) 

 

Here 0 is the fundamental frequency of the signal and n the index of the harmonic such 

that 0n is the nth harmonic. The period of the signal is called T for the continuous case 

as 0K for the discrete case. In the discrete case, the sample number k, is also called the bin 

number. The frequency spac between the bin for the continuous case is 0  and 
0

2
K

for the 

discrete case. 

 

What happens to the coefficients of a periodic series as we stretch the period by adding 

more and more zeros in between the information pieces?  

 

The frequency resolution becomes smaller and smaller as period increases. As we 

increase T, the fundamental frequency which is equal to 0 2 / T  , gets smaller, hence 

the space between the harmonics also becomes smaller. The consequence of T going to 

, is that 0 approaches zero and the summation in Eq. (1.1)  effectively becomes an 

integral,  resolution becoming a continuous variable . 

 

In the limit, we can replace the discrete harmonics which are an integer multiple of the 

fundamental frequency with a continuous frequency,  since they are now so close 

together that they are essentially continuous. 

 

Take a look at signal in Fig. 4.2. In the first figure we show a pulse train and its CTFS in 

(a), (b) and (c) as we push the signal period out. Note that as the pulses move further 

apart, the harmonics begin to move closer together, i.e. there is more of them in each 

lobe.  

 

The last lone pulse is the aperiodic signal and it is not hard to imagine looking at the way 

these harmonics are getting closer together that its FSC will become continuous. 
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Figure 4.2 - Stretching the period, makes the fundamental frequency smaller, which 

makes the spectral lines move closer together. 

 

 

 

Key idea: Increasing the period of a signal allows us to create an aperiodic version of 

the signal. The increasing period brings harmonics closer together, so that the 

spectrum of an aperiodic signal becomes continuous. 

 

Continuous-time Fourier Transform (CTFT) 
 

We can apply Fourier series analysis to a non-periodic signal and the spectrum will now 

have a continuous distribution instead of the discrete one we get for periodic signals. This 

idea of extending the period which results in this change is our segway into the concept 

of Fourier transform. We will now discuss how Fourier transform (FT) is derived from 

the Fourier series coefficients (FSC). After we discuss the continuous-time Fourier 

transform (CTFT), we will then look at the discrete-time Fourier transform (DTFT).   

 

We write the Fourier series coefficients of a continuous-time signal once again as 
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C e  (1.3) 

 

Where n  is the nth harmonic or is equal to n times the fundamental frequency, 0n , and 

T is the period of the fundamental frequency. In order to make T go to infinity, we make 

a couple of changes in the formula. First we substitute this into Eq. (1.3) 
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Then we make 0  a function of the period T and write it as the infinitesimal  . We do 

that, because in Eq. (1.4) as period T, gets larger, we are faced with a division by infinity.  

Putting the period in form of frequency avoids this problem. Then we only have to worry 

about multiplication by zero! Now we add the limit in the front and change the limits of 

integration to length of the signal. Since the signal is zero outside of these limits, we do 

not need to go further. 
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C x t e dt  (1.5) 

 

This expression is not very helpful so far, because as T goes to infinity,   goes to zero, 

so the whole expression goes to zero.  But now we substitute this equation into the 

expression of the Fourier series itself. The expression foe the Fourier series is given by: 
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Now substitute into this equation, the value of nC form Eq. (1.5) modified for an extended 

period case, we get 
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Notice what happened here, we substituted into Eq. (1.6), the modified value of the 

extended period coefficients from Eq. (1.6).  Now as T goes to infinity, range of 

integration in the middle integral changes again from -  to  .  Also because the 

harmonics move so close to each other that we call them by just , a continuous variable, 

instead of n . The summation on the outside also becomes an integration because we are 

now multiplying the coefficients (the middle part) with  , kind of like computing an 

infinitesimal area. Now we rearrange this combination of the two equations as 

 

 

 
2

( )) (
1

n nj t j tx t ex e dt dt  (1.8) 

 

Because the middle part is now a function of the continuous frequency, we give it a 

special name, calling it the Fourier transform. Notice that the formula outside of this 

term is that of the Fourier series. 
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This is the formula for the coefficients of a non-periodic signal. The time-domain signal 

is obtained by substituting ( )X   back into Eq. (1.8) as 
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Summarizing we have the Fourier transform of a continuous-time non-periodic signal 

as 

 

 ( ) ( ) j tX x t e dt  (1.11) 

 

The formula for the time-domain signal, Eq. (1.10) is called the Inverse Fourier 

Transform.  

 

In frequency form the two formulas are written as 

 

Forward Fourier transform 

 

 2( ) ( ) j ftX f x t e  (1.12) 

Inverse Fourier Transform 

  

 2( ) ( ) j ftx t X f e df  (1.13) 

 

In these formulas as compared to the Fourier series formula of Eq. (1.3), we no longer 

have the discrete harmonic index n to denote the nth harmonic because the frequency is 

now continuous. 
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Comparing Fourier series coefficients and Fourier transform 
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Figure 4.3 – Fourier series and Fourier Transform  
  

 

The Fourier series is supposedly valid only for periodic signals.  We can use Fourier sries 

analysis with both discrete and continuous-time signals as long as they are periodic. 

When the signal is non-periodic, the tool of analysis is the Fourier Transfrom. Just as 

Fourier series can be applied to continuous and discrete signals, the Fourier transfrom 

also has two forms, one for continuous and the other for a discete signal. The spectrum  

obtained from FS is discrete for both types of signals, but Fourier transfrom gives us a 

continuous spectrum instead. 

 

Let’s compare the Fourier transform (FT) with the Fourier series coefficient (FSC) 

formula for a continuous-time periodic signal. The FSC and the FT formulas are  given 

as: 

 

 0
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( ) ( )

n
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j t
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j t
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T
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 (1.14) 

 

When we compare FSC with the FT formulas, we see that they are nearly the same 

except that the term 1/T in the front is missing from the latter. Where did it go and does it 

have any significance? We started development of FT by assuming that T goes to 

infinity, and then we equated 1/T to f and again mapped it to a continuous variable   

by turning it into d . The d  was then associated with the time-domain formula or the 

inverse transform (notice, it is not included in the center part of Eq. (1.8), which became 

the Fourier transform.). So it moved to the inverse transform in form of a 2  factor.  The 

other difference is that the frequency is continuous for the FT.  

 

Notice the difference between the time-domain signals as given by FS and FT. 
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In FS. to determine the quantity of a particular harmonic, we multiplied the signal by that 

harmonic, integrated the product over one period and divided the result by T. This gave 

us the amplitude of that harmonic. (See Chapter 1). In fact we do that for all harmonics, 

each divided by T. But here in the case of the Fourier transform, ostensibly we are doing 

the same thing but we do not divide by period T. So what happens here is that we are not 

determining the signal’s true amplitude. We are computing a measure of the content but 

it is not the actual amplitude. And since we are missing the same exact term form all 

coefficients, the period, we say that, the Fourier transform determines only relative 

amplitudes. But often that is good enough. All we are really interested in is the relative 

levels of powers in the signal. The true power of the signal in most cases where we use 

these analytical tools is not important. Fourier Spectrum gives us the relative distribution 

of power among the various harmonic frequencies in the signal. We often normalize the 

result, putting the maximum at 0 dB. So the relative levels are consistent and useful.  

 

 

CTFT of aperiodic signals 

 

Now we will take a look at some important non-periodic signals and their transforms. 

We start with the impulse.  

Example 4-1 
What is the FT of a single impulse function located at origin?  

 

We write the CTFT expression Eq. (1.9)  and substitute the delta function for the analysis 

signal. 
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0

( ) ( )

( )

1
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w e dt  

 

In the second step, multipliction by the delta function means to use the value of the 

function at the origin, and at that point, the value of the complex exonential is 1.0. The 

integral of the delta function is 1.0 which is the value of the CTFT of a impulse function 

at the origin. Hence the coefficient is a constant value and we get a flat line for the 

spectrum.  

 

The other way to think about this is that a delta function is a summation of an infinite 

number of frequencies, so we see in its decomposition a spectrum that encompass the 

whole of the frequency space to infinity.  
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,Time k
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Figure 4.4 – Spectrum of a delta function located at time 0 

 

 

What happens if there are two impulse functions? 

 

0

1

,Time k2


 
Figure 4.5 – Spectrum of two delta functions  

 

 

The CTFT calculation can be separated in two parts, one for each of these impulses. 

 



Fourier Transform of aperiodic and periodic signals - C. Langton  Page 10 

 2 2
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Well, that was kind of obvious.  Did we not see  in Chapter 2, that two equidistant pulses 

are the coefficients of a cosine wave. Now can you guess what will happen if we add one 

more impulse in time domain? As more of these are added, the addition of each new 

impulse in time-domain makes the overall response a sinc function. We will see this case 

later. 

 

Example 4-2 

Find the CTFT of a square pulse of amplitude 1v, with a period of , located at zero.  

These are often called either square or rectangular pulses, both names mean the same 

thing. 

 

 /2  /2 

 
(a) 

 
(b) 
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(c ) 

 

Figure 4.6 – Spectrum along a Frequency line  

 A square pulse has a sinc shaped spectrum. (a) time-domain shape, (b) Spectrum 

for .1  sec. (c) Spectrum for .2  sec. 

 
%Example 4 - 2 

clf  
tau = .2;  
w = - 250: .01: 250;  
xom = tau*sinc(w*tau/(2*pi));  
plot(w/(2*pi), xom)  

 

We write the CTFT as given by Eq. (1.9). The function has a value of 1.0 for the duration 

of the pulse. 
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This can be simplified to  

 ( ) sinc
2

X


 


 
  

 
 (1.16) 

 

We see the spectrum plotted in Fig-4.4  for .1  and .2 secs.  Note that as the pulse 

gets longer (or wider), its frequency domain spectrum gets narrower. Remember as it is 

getting narrower, it is approaching the behavior of a delta function.  
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For first case, the first zero crossing occurs 10 Hz. This is the inverse of the pulse time 

0.1. For the second case, when the pulse is .2 seconds wide, the zero crossing occurs at 5 

Hz. The spectrum is aperiodic and has infinite harmonics. It is the generalization of the 

two pulse case in Example 4-1. What is the significance of these zero crossings? Note 

that the spectrum of the square pulse is given by a sinc function. The sinc function is zero 

for every integer value of its argument, so we get zeros at these certain frequency points. 

 

If the pulse were to become infinitely wide, the FT would become an impulse function. If 

it were infinitely narrow as in Example 4-1, the frequency spectrum would be flat. A 

constant signal in time domain has a delta form in the frequency domain. This bi-

directional relationship is often written as:   
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CTFT

CTFT

 (1.17) 

 

Example 4-3 

Now assume that instead of the square pulse shown in Example 4-2, we are given a 

frequency response that looks like a square pulse. The spectrum is flat for a certain band, 

from W  to W Hz. Notice, that in the first example, we defined the half width of the 

pulse as / 2  but here we define the half bandwidth by W and not by W/2. The reason is 

that in time domain, when a pulse is moved, its period is still . But bandwidth is 

designated as a positive quantity.  There is no such thing as a negative bandwidth. In this 

case, the bandwidth of this signal (because it is centered at 0) is said to be W Hz and not 

2W Hz.  However if this signal were moved to a higher frequency center such that the 

whole signal was in the positive frequency range, it would be said to have a bandwidth of 

2W Hz. This crazy definition gives rise to the concepts of lowpass and bandpass 

bandwidths. 

 

What time-domain signal produces this frequency response? We compute the time 

domain signal by the inverse Fourier transform. 
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Which can be simplified to  
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Well this also gives us a sinc function. So it looks as if a sinc function in time domain 

gives a square frequency response. These are shown in Figure 4.7 for two cases of 

bandwidths. These look like strange shapes for a time domain signal because they are not 

limited to a certain time period. But because they are “well-behaved”, which means they 

cross zeros at predicable points, we can and do use these as signal shapes to transmit 

signals. Although theoretically wonderful, the sinc function cannot be used in real 

systems because it is infinitely long.  An alternate raised cosine shape is the most 

commonly used symbol shape. 
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(c ) 

Figure 4.7 – Time domain signal corresponding to the rectangular frequency. To 

obtain a rectangular frequency spectrum, a sinc pulse shape is required in time-

domain.  A narrow band signal is slower than a wideband signal in its zero 

crossings. (a) W = 2  Hz, (b) W = 4 Hz 
 

The frequency spectrum shown in Fig. 4.7(a) is a very desirable form. We want the 

frequency response to be tightly constrained. The way to get this type of spectrum is to 

have a time domain signal that is a sinc function. This is the dual of the first case, where a 

square pulse produces a sinc frequency response.   

 

For W = 1  Hz, we get the first zero crossing at = 0.5 seconds  ( 2 1 /W and for the 

second case W = 2 Hz, the first zero crossing occurs at 0.25 seconds.   This tells us that a 

wideband signal requires a faster signal than one that is narrow band.  These two cases 

are complementary and very useful.  

Example 4-4 
Here is an another pair of very important CTFTs.  

 

We have a single impulse located at 1 in frequency domain. In Example 4-1, we saw 

what we get when the impulse is located at zero frequency. Here it is located at a non-

zero frequency. What signal gives this FT?  

 

We will take the inverse FT, denoted by this pretty symbol 
1 . We characterize the 

single impulse as a delta function, 1( )   . 
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This gives us the complex exponential in time domain. Well, this was kind of obvious 

too. In Chapter two we looked at the FSC of a complex exponential. Because it is a 

complex signal, it has non-symmetrical frequency response which consists of just one 

impulse located at the exponential frequency. Fourier transform gives the same result. 

 

We can write the result by taking the 2 factor to the other side. 
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These results are very important and should be committed to memory. 

Example 4-5 

What is the FT of a cosine wave? 

 

We are doing FT, so we make cosine wave a non-periodic signal by limiting it to one 

period. 
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From example 4-4, we get this transform.  
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Substituting this transform for the exponentials, we get 
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The only difference we see between the FT of cosine wave and FSC we computed in 

Chapter 2 seems to be the scaling. In the case of FSC, we got two delta functions at 0

and 0  of amplitude ½. The amplitude of the FT computed is . So we seem to be off 

by 2  when comparing the FSC of a signal with its FT. We explain the reason for this 

later in this chapter. 

 

Fourier transform of a periodic signal 
Fourier transform came about so that the analysis can be made rigorously applicable to 

non-periodic signals. All of the above signals were aperiodic, even Example 4-5, where 

we did the CTFT of a cosine wave but we limited it to one period.  
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Can we also use the FT for a periodic signal?  That would sure simplify things. We can 

then go ahead and forget about Fourier series. But will we get the same answer as with 

the Fourier series?   

 

Let’s take a periodic signal x(t) with fundamental frequency of 0 02 / T   and write its 

FS representation. 
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Where Cn are the CTFS coefficients and are given by 
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Let’s take the CTFT of both sides of Eq. (1.19) using the symbol  to indicate a FT, we 

get 
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We can move the coefficients out because they are not a function of frequency. They are 

just numbers. 

 

  0( )
jn t

n

n

X C e






 
  

 
  (1.22) 

 

The FT of 0jn t
e


 is a delta function as we learned in Example 4-4. Making the 

substitution, we get 

 

 0( ) 2 ( )k

k

X C n    




 
  

 
  (1.23) 

 

What does this equation say? It says that the CTFT of a periodic signal is a sampled 

version of the Fourier series coefficient of the periodic case. The coefficients from the 

Fourier series of the same periodic series are multiplied by a train of impulses. This 

results in again a discrete spectrum with the area of each impulse at the 0n harmonic 

frequency equal to the Fourier series coefficient of that frequency times 2 .  

 

So now we have the Fourier Transform of a periodic signal as a discrete form of the 

Fourier series coefficients. Okay, this is admittedly strange. The FT of a non-periodic 

signal is continuous but the FT of a periodic signal is discrete? Yes. That is how it is. The 
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delta function in (1.23) combs/sifts the coefficients and then repeats them with 

fundamental frequency 0 .  

 

CTFT of an aperiodic signal  aperiodic and continuous  

CTFT of a periodic signal    discrete and periodic. 

 

Remember, we said that the CTFS does not exactly measure the true “quantity” of each 

harmonic and in Eq. (1.23)  we see the proof. The CTFT values are actually 2 times 

greater and this explains the results of Example 4-5. 

 

CTFT of periodic signals 

 

Now we will look at some periodic signals and their Fourier transform. The FT of 

periodic signals is given as a modification of the Fourier series coefficients by 

 

0( ) 2 ( )k

k

X C n    




 
  

 
  

Example 4-6 

What is the FT of a periodic impulse train with period 0T . 

 

We already computed the FSC of an impulse. It is a constant. The FT of an impulse train 

can be obtained from the relationship derived between the FSC and FT, Eq. (1.23). 

 

0

0

( ) 2 ( )

2 ( )

k

k

k

X C k

k

    

   









 
  

 

 





 

 

The FSC of a single delta function is 1, a flat line. The result above samples (also called 

sifting because it is kind of like passing it through a sieve with a lot of holes in it.) that 

flat line in frequency domain, resulting in an impulse train, with each impulse repeating 

at the fundamental frequency of the signal, 0 01 /F T . 
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1

0T

1

0F
n k

[ ]x n kd

Figure 4.8 – An impulse train and its discrete-time Fourier coefficients 
 

Example 4-7 
Find the Fourier transform of a periodic square pulse train.  

 

 

-T/2 T/2 3T/2-3T/2-5T/2  

   
 

 

 
 

Figure 4.9 – A square pulse train and its discrete-time Fourier coefficients 
 

The FSC of a square pulse train is given by (See Chapter 2) 

 

sinck

k
C

T T

  
  

 
 

 

For the FT of this periodic signal, we will use Eq. (1.23) 

 

0( ) 2 ( )k

k

X C k    




 
  

 
   

 

The result is essentially the sampled version of the Fourier series coefficients scaled by  

2  (see last example, Chapter 2) which are of course themselves discrete.  So here we 
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multiply a set of discrete numbers by an impulse train to obtain a sampled version of the 

coefficients. These are shown in Fig. 4.9 

 
  

Discrete-time Fourier transform (DTFT) 

 

The concept of Fourier transform we discussed for a continuous-time aperiodic signal 

applies equally to discrete-time aperiodic signals except for some changes in the 

integration period. The discrete-time Fourier transform, also called the DTFT synthesis 

equation is given by  

 [( ]) j nk

n

x kX e


 



   (1.24) 

 

Here n is the index of the harmonics and k the index of time. (Note that many books use 

the reverse notation, with n for time and k for harmonic index. So please make note that 

your homework/book may have different notation.) Recall that for the continuous case 

we refer to the fundamental frequency as 
0

2
0 T

, and for the discrete case as 
0

2
0 K

. 

The terms and are the continuous vrsion of the analog and the discrete frequencies.  

 

The inverse discrete-time Fourier transform, also called the analysis equation is given by  

 

  
2

1
[ ]

2

j n
dXx k e





   (1.25) 

 

Note that index n goes with th frequency. These two equations (1.25) and (1.24) are 

called the discrete-time Fourier transform pair and are also written as: 

 

  [ ]x k X   (1.26) 

 

Both the continuous-time and the discrete-time Fourier series coefficients are discrete. 

The coefficients of the discrete-time Fourier transform (DTFT) however are continuous, 

just as they are for the continuous-time case.  

 

We learned in Chapter 3 that discrete signals produce a spectrum that repeats with 

fundamental frequency. The Fourier Transform of the discrete signals also repeats with 

the fundamental frequency, the only difference being that the DTFT is continuous where 

the DTFS spectrum is discrete.  

 

CTFT of an aperiodic signal  aperiodic and continuous  

CTFT of a periodic signal    discrete and periodic. 

DTFT of an aperiodic signal  periodic and continuous  

DTFT of a periodic signal    discrete and periodic. 
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DTFT of aperiodic signals 

Example 4-8 
Find the DTFT of this signal.  

 

So here we now look at three impulses as opposed to just two in Example 4-1. In that 

case, the result was a cosine function. 

 

 
 [ ] [ 1] [ ] [ 1]x k k k k  

 
Figure 4.10 – Signal of example 4-8 

 

We compute the DTFT by treating each impulse individually. 

 

 

( ) ( 1) ( ) ( 1)

1

1 2 cos

j k j k j k

k k k

j j

X k e k e k e

e  

 

 
Figure 4.11 – The DTFT of signal 4-8 (a) DTFT 

 

Note that the spectrum is periodic with period 2 .  
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 Here we also get a cosine wave. What happens if we have four impulses? Would we still 

get a cosine? 

Example 4-9 
What is the DTFT of this discrete signal? 

 

We can again treat each one of these individually. 

[ ] [ ] 2 [ 1] 4 [ 2]x k k k k  

 
Figure 4.12 – Signal of example 4-9 

 

2 4

Re Im

( ) ( ) 2 ( 1) 4 ( 2)

1 2 4

1 cos(2 ) sin(2 ) 2 cos(4 ) 2 sin(4 )

1 cos(2 ) 2 cos(4 ) (sin(2 ) 2 sin(4 )

j k j k j k

k k k

j j

al ag

X k e k e k e

e e

j j

j
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Figure 4.13 – (a) Real portion of the DTFT (b) Imaginary part of the DTFT, (c) the 

power spectrum of the signal, (d) the phase spectrum of the signal. 

 

We also have three pulses here although of unequal magnitude. But the spectrum is still a 

form of a cosine wave. A spectrum is usually plotted as the square of magnitude of the 

signal. Here we plot the power spectrum and the phase spectrum of the signal. 

-3

-2

-1

0

1

2

3

Digital Frequency-3 -2 - 0  2 3

0

5

10

15

20

Digital Frequency-3 -2 - 0  2 3

-3

-2

-1

0

1

2

3

Digital Frequency
¡ 9 ¡ 29

3
¡ 9

3
0 9

3
29
3

9



Fourier Transform of aperiodic and periodic signals - C. Langton  Page 23 

 

  

I have been giving a short shrift to the phase. The reason is that in a majority of the cases, 

phase is not very instructive. In practical sense, there is not much we can do to control 

phase. For communication signals, it is the amplitude or the power spectrum that gives 

the information that we want and need. However for radar applications, phase 

information is very important and can be used to determine both the motion and Doppler 

shift of the signal. So phase is not always useless. 

 

Example 4-10 
Find the DTFT of this signal. 

 

 

 

 
Figure 4.14 – A pulse of length N = 5 and its spectrum 

% Example 4 - 10 
clf  
Kp = 5;  
a = [1];  
b = [ 0 0 a a a a a 0 0 ];  
subplot(2,1,1)  
n = - 4: 4;  
stem(n, b)  
xlabel( 'Time, k' )  
axis([ - 4 4 0 1.5])  
subplot(2,1,2)  
t = - 10:.01: 10;  
xom = (Kp)*diric(2*t, Kp);  
grid on 
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plot(t, xom)  
pilabels  
xlabel( 'Fr equency' )  
hold on 

 

 

 

 

( ) [ ] 1

2 1
sin

2

1
sin
2

N
j n j n

k k N

X x n e e

N

 

 

Here we have five impulses. The spectrum equation looks like a sinc function but it is 

instead a variation, called the Drichlet function. The Drichlet function is essentially a 

repeating or periodic sinc function. With size of pulse greater than 3, we begin to see a 

repeating sinc function as the spectrum of such signals. 

 

The DTFT just as is the CTFT is continuous. But it has an additional property that we 

mentioned in relation to the discrete Fourier Series. The spectrum obtained by a DTFT 

also replicates at the fundamental frequency of the discrete signal. In Fig. 4-14, the 

spectrum has a period of 2 . 

 

DTFT of periodic signals 
 

Just as we were able to derive a method for applying the CTFT to periodic signals, we 

can do the same with discrete-time Fourier transform. Let’s take a periodic signal with 

period 0K and write its discrete Fourier series equation. 

 

 0

0

[ ] jn k
n

K

x k C e  

Where the coefficients are given by 

 

 0

00

1
[ ] jn k

n
K

C x k e
K

 

 

FT of this periodic signal is also  given by the same relationship we derived for 

continuous signals in Eq. (1.24). The DTFT of a periodic signal is also the sampled 

version of the discrete-time Fourier series coefficients, just as for the continuous time 

case. 
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0

2
( ) 2 n

n

n
X C

K
 (1.27) 

 

Here the coefficients (which come from the DTFSC) repeat with the fundamental 

frequency 0 02 / K . 

  

The DTFT of aperiodic signals is continuous. In most cases, the DTFT is obtained by 

closed from analysis, and not by computers. This is because the computer solutions are 

by necessity, discrete. So we have two issues we want to address, how to compute the 

DTFT of a signal numerically and two how to make the DTFT apply to periodic signal. 

 

We showed that the DTFT of periodic signals are continuous and repeating. The same 

signal if made periodic has the same coefficients except they are discrete per Eq. (1.27).  

The reason is somewhat intuitive. The periodicity means that the signal information is 

repeating with some frequency. As you recall we said that for discrete signals, the 

harmonics of the digital frequency are identical. They do not give us any unique 

information. All the information comes from harmonics that are instead inside the 

fundamental period.  

 

For the case of periodic discrete signals, we take the same coefficients from the aperiodic 

case, but now add an additional condition of a repeating period. But did we not say that 

the coefficients of the aperiodic signal repeat? So what is different here? What is the 

relationship of the frequency at which the aperiodic coefficients repeat vs. the periodic 

signal. If the aperiodic signal has an infinite period, then what is that frequency at which 

the DTFT was repeating? 

 

Now here is where we get tricky. The period of the DTFT for the aperiodic signals is 2 .  

This is kind of a generic period. Not related to any frequency per say. So now if the 

signal is actually repeating let’s say at a frequency of 0 , then the DTFT will repeat 

instead of at 2 radians, but at 0 2 . So that is the difference between the aperiodic 

and periodic signal repeat frequencies. One repeats with 2 and the other with addition of 

the signal digital frequency. 

 

The periodic-ness of the signal results in a form of sampling of the DTFT. The only 

difference one sees between the DTFT of an aperiodic vs. a periodic signal is that the 

DTFT of the periodic signal is discrete, being a sampled version of the discrete-time 

Fourier series coefficients.   

 

Example 4-12 

 

Find the FT of the periodic impulse train. 
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Figure 4.15 – A pulse train and its spectrum 

 

 

The Fourier coefficients of this signal are given by 

 

 0

0 0

1
[ ]

j n k
k

k K

d x k e
K

 

 

The FT is given by  

 0
0

2
( )

n

X n
K

 

 

The FT is plotted for N = 5. The transform repeats at the fundamental frequency which is 

2

5
. 

 

Example 4-12 

Find the DTFT of 0[ ] cos( )x k k . 

 

We write this signal in its Euler form as 

 

0 0
0

1 1
cos( )

2 2
j k j kk e e  

Assume that 0
2

5
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The coefficients of the signal are 
1

2
 at k = 1 . Applying Eq. (1.27) to the coefficients, we 

get for  

 

 
2 2

( )
5 5

X  

 



0

( )X 

0 02 
02  202   02  2

 
 

Figure 4.16  DTFT of a discrete cosine wave 

 

The result is that the coefficients are repeating with frequency 0 . This is identical in 

form to the DTFSC. 

 

Example 4-13 

Find the DTFT of this discrete periodic signal. 

 

 0[ ] j kx k e  

 

This is the complex exponential of a specific frequency. We will use Eq. (1.27) to find 

the DTFT of this signal. The DTFSC of this signal we know from Example 3-9, Chapter 

3. The coefficients already repeat with frequency 0 . 

 

 
01

0n

n p
D

elsewhere
 

 

We write the DTFT of this signal as 

 

0( ) 2 2
n

X m  

 

The coefficients were repeating to start with, with frequency 0.So this operation did 

nothing new . The DTFT is same as the DTFS coefficients. 
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Example 4-13 

Find the DTFT of this discrete periodic signal. The signal is periodic with period 0K . The 

length of the impulses is pK samples. 

 

 

 

 
 

Figure 4-17 DTFT of a periodic signal (a) time domain signal, (b) DTFSC of the 

signal. 

 

The DTFSC of this signal are discrete and are given by 

 

 
0

0 0

sin /1
Real

sin /

p

n

K n K
C

K n K
 

 

The coefficients are shown in Figure 4.17 for Kp = 5 and K0 = 7 .  

 

To obtain the DTFT of this signal means multiplying the DTFSC with a pulse train of 

frequency 0 2 / 7 . But these coefficients are already located at a frequency 

resolution of 0 2 / 7 . How do we know that? Just count the number of samples from 

to . We get 7. So the fundamental digital frequency is 2 / 7 .  

 

So the DTFT of this periodic signal is same as DTFSC except it is scaled by a factor 2 .  
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Let’s revisit all the cases that we looked at so far. 

 

Continuous-time Fourier Series  

 

We started with this case in Chapter one. The CTFS is defined for periodic signals where 

time is continuous, such as the signal shown below.  

 

22 2

T TT

2

T

A

 
Figure 4.18 A periodic signal with continuous time 

 

The CTFS coefficients of this periodic signal are given by 

 

 sincn
n

C
T T

 

 

Assume T = 1 / 2T  and for case 1 / 2 1 / 4T . Let’s examine this spectrum. 

First thing we notice is that the spectrum is a sinc function which we know does not 

repeat. The fundamental frequency of this signal is 0 1 / 2T . For case 1, when 

/ .5T , The value of the spectrum at f = 0, has a value of .50, which is the value of the 

dc component or is equal to 
T

.  

 

At n = 2, the spectrum shows a zero value which is what you get for sinc(1). The sinc 

function is zero at all integer values of its argument. This corresponds to a frequency of

2 .  The spectrum hence is zero at n = 2, 4, 6, which corresponds to frequencies of 

2 , 4 , 6 , . 

 

For case / .2T where the argument of the sinc function is / 5n , the spectrum is zero 

at 5, 10, 15,n  which corresponds to frequencies of 5 , 10 , 15 , .  

 

Note that as the / 1T , the spectrum begins to look like an impulse function, which is 

exactly the spectrum of an impulse train. 
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Figure 4.19 The discrete coefficients of the continuous signal as a function of the 

duty cycle of the signal. As the pulse gets narrow, its CTFSC get more dense.  

 

 

 
% Figure 4 - 19 

clf  
tT = .1;  
n = - 10: .01: 10;  
xom = tT*sinc(n*tT);  
plot(n, xom, ' - .' )  
grid on 
hold on 
k = - 40: 40;  
xomd = tT*sinc(k*tT);  
stem(k, xomd, 'filled' )  
xlabel( 'Harmonic index' )  
legend( 't/T = .1' )  
  

 

The ratio /T  is called the duty cycle of the signal. A small duty cycle means that 

energy is concentrated in much smaller period of time which means that more 

frequencies are required to represent it (it is approaching a delta function!) A duty cycle 

of .5 means that the energy is less concentrated. This case has the narrowest main lobe of 

all cases shown, i.e. this case requires the least amount of bandwidth. As duty cycle 

decreases, the spectrum gets wider.  

 

 

Continuous-time Fourier Transform 

 

No let’s look at just one period of the same signal. It is aperiodic, so we do a Fourier 

transform of this signal.   
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22

A

 
 

The CTFT of this signal is given by the continuous function 

 

 ( ) sinc
2

X  

 

Assume that . We plot the CTFT below. Compare this to the expression for the 

periodic case above. This signal is continuous but also aperiodic. The zeros occur every 2 

Hz, why? For , we get 

 

( ) sinc
2

X  

So for this case, the sinc function, hence the spectrum is zero for all interer multiples of 2 

Hz. Similalry for 2
5

, we get crossings every 5 Hz. And for 
5

, we get zero 

crossing every 10 Hz.  

 

 
 

 

 

-8 -6 -4 -2 0 2 4 6 8
-0.2

0

0.2

0.4

0.6



Fourier Transform of aperiodic and periodic signals - C. Langton  Page 33 

 
 

 
 

Figure 4.20 The CTFT of the continuous but aperiodic square pulse as a function of 

the width the square pulse. As the pulse gets narrow, its lobes in the spectrum get 

wider.  

 

 
% Figure 4.20  

clf  
tT = .50;  
n = - 50: 1: 50;  
xom = tT*sinc(n*tT/(2*pi));  
plot(n/(2*pi) , xom)  
grid on 

 

Here the spectrum is plotted as function of the frequency. As the time duration of the 

pulse narrows, the signal content spreads. The shape is the same as that of the CTFS case. 

Both are a non-repeating sinc function, with zero crossings at integer multiple of the 

fundamental frequency of the signal, main difference being that the first is discrete and 

the second continuous. 

 

Discrete-time Fourier series, DTFS 
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Now let’s look at the same signal, in a discrete form. We will use the discrete version of 

the signal shown in Figure 4.18. 

 

 
 

Figure 4.21 The discrete-time periodic signal.  

 

The DTFS coefficients of this signal are computed in Chapter 3, Example 3-8. The 

spectrum contains a Drichlet function. 

 

Here we plot the spectrums for several cases of pulse sizes while keeping the period 

fixed. We want to see what effect this has on the spectrum. 

 
Figure 4.22 The discrete-time periodic signal and its DTFSC - pulse size 

07, 7pK K  

.  

In this case, we essentially have an impulse train. The  period is 1/7 seconds and as such 

in the frequency domain, we get impulses located 7 bins apart, each of which are 2 / 7  

Hz apart. Hence in the frequency domain the frequency pulses have a period of 2  which 

corresponds to the period of 7 samples. 
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Figure 4.23 The discrete-time periodic signal and its DTFSC - pulse size 

06, 7pK K  

 

In this case, the pulse size is 6 samples in time domain lasting 6/7 sconds. In frequency 

domain each bin is 2 / 7 .897Hz . We see in the frequency domain that the main lobe is 

a little over 1 bin wide, which is a bandwith of 7/6 Hz, and is equal to the inverse of the 

pulse duration time. A wide pulse has narrow bandwidth so in the available frequency 

space of 2 , we see a sinc like pattern such as we would expect having seen the results 

from the discrete case. As long as the pulse width is , we will see the sinc function 

tails. 

 

Figure 4.24 The discrete-time periodic signal and its DTFSC - pulse size 

05, 7pK K  

In this case, the pulse size is 5 samples in time domain lasting 5/7 sconds. In the 

frequency domain the main lobe is approximately 1.5 bins wide, from which we get a 

bandwidth of 1.35 Hz, which is pretty close to actual the bandwith of 7/5 Hz = 1.4 Hz, 

the inverse of the pulse duration time. We still see a sinc like pattern since the width of 

the pulse is still  . 
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Figure 4.25 The discrete-time periodic signal and its DTFSC - pulse size 

05, 7pK K  

In this case, the pulse size is 4 samples in time domain lasting 4/7 sconds. In the 

frequency domain that the main lobe is approximately 2 bins wide, from which we get a 

bandwidth of 1.79 Hz, which is pretty close to actual the bandwith of 7/4 Hz = 1.75 Hz, 

the inverse of the pulse duration time. The sinc like tails are enow beginning to disappear. 
 

 

Figure 4-25 The discrete-time periodic signal and its DTFSC - pulse size 

03, 7pK K  

In this case, the pulse size is 3 samples in time domain lasting 3/7 sconds. In the 

frequency domain the main lobe is approximately 2.5 bins wide, from which we get a 

bandwidth of 2.4 Hz, which is pretty close to actual the bandwith of 7/3 Hz = 2.3 Hz, the 

inverse of the pulse duration time. The sinc tails are no longer seen because the pulse size 

is narrowing and requires more than half the bandwidth and hence we are now getting  a 

form of alaising effect. 

 

We see the same thing in the next graph, where the pulse is very narrow compared to the 

period and ovelaps the spectrum of the previous pulse. 
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Figure 4.27 The discrete-time periodic signal and its DTFSC - pulse size 

02, 7pK K  

 

 

Figure 4.28 The discrete-time periodic signal and its DTFSC - pulse size 

01, 7pK K
  

 

In this case, we have devolved to case similar to the first one, the pulses are located 7 

samples apart and hence in frequency domain they are much closer, which being the 

inverse of period time. In frequency domain each pulse is one bin apart with resolution of 

2 / 7  Hz. 

 
% Figure 4.28  

clf  
K0 = 7;  
N = 1;  
a = [1];  
b = [ a 0 0 0 0 0 0 ];  
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c = [ b b b];  
subplot(2,1,1)  
t = - 11: 9;  
stem(t, c)  
axis([ - 11 9 0 1.5])  
subplot(2,1,2)  
n = - 14: 13;  
xom = (N/K0)*diric(2*n*pi/K0, N);  
grid on 
stem(n, xom, 'filled' )  
hold on 
n = - 11: .01: 9;  
xom2 = (N/K0)*diric(2*n*pi/K0, N);  
plot(n, xom2, ' - .r'  )  
axis([ - 11 9 - 1 1])  

 
 

 

Discrete-time Fourier transform of aperiodic signals 

 

Now we will discuss the two most important cases. Both are the discrete-time Fourier 

transform, for aperiodic and periodic signals.  

 

We start first with the DTFT of a aperiodic signal. 

 

 
 

 

 
 

Figure 4.29 The discrete-time aperiodic signal and its DTFSC - pulse size = 3  

 

The spectrum is continuous and repeating. 
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Figure 4.30 - The discrete-time aperiodic signal and its DTFSC - pulse size = 7  

 

 

This is a DTFT of similar signal with a longer pulse length. Just as we said in the 

previous case, a longer pulse has smaller frequency content so the spectrum is not aliased 

and we do see the sinc pattern in between the main lobes.  

 

However, now we ask a key question. If DTFT assumes that the signal has an infinite 

period, then why does it matter how long the pulse is relative to the number of points 

shown? 

 

Answer for that can be seen in the limits of the calculation of the DTFT. 
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The DTFT is being calculated only with the width of the pulse as a variable and nothing 

else. Since larger the number of discrete harmonics, the better the resolution, this 

becomes more of a resolution question rather than the issue of the time width of the 

pulse. We are measuring the width of the pulse by the number of samples and not time. 

When we are looking at the spectrum of a discrete aperiodic signal, we are seeing only 

the frequency content in that portion. 
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In case (a), only three functions have been added to produce the curve, one for each 

‘impulse sample‘ of the signal, In case (b), we have used 7 such functions, each with a 

resolution of 2 N  .  Although both are periodic with 2 , the second case has better 

resolution. 

 

Then we have another question. Why is it not being interpreted as a train of impulses? 

Why aren’t we getting a spectrum same as 4.26? What else is going on here? Actually it 

is interpreting it as impulses, just that it is adding all the “impulse responses of each of 

the N impulses” instead of giving the response of just one. So the more of these impulses 

there are, the more functions are being added to produce the spectrum. If we wanted the 

signal to be interpreted as independent impulse train, then we would set the pulse period  

to pK = 1. 

 

 

DTFT of a periodic signal 

 

Now we will see if we can bring in the idea of a period into DTFT. The DTFT of a 

periodic signal is the sampled version of its DTFS complex coefficients. 

 

We write this as 

 

 0( ) 2 n
n

X D n  

 

So this means that the DTFT of a periodic signal is the sampled version of the DTFS. We 

computed the DTFS of square pulses in Case 3. The DTSFC computed of a periodic 

discrete waveform already appear to be discrete so what are we doing extra here? Well 

not much. The process here just multiplies the coefficients by an impulse train in the 

frequency domain of an assumed fundamental frequency. This assumed frequency can be 

different than the one used in DTFS or it can be the same. If it is same, we will get the 

same values as DTFS except scaled by 2 . If not the same, then we will get a decimated 

version. 

 

All of these ideas about Fourier series, the signal periodicity and the Fourier transform 

are so closely related that they have tendency to be confused and forgotten. But as we 

shall see later when looking analysis of real signals using Fourier transform that they tool 

is very forgiving and we can get useful information even we do not do the “correct” 

thing, i.e. use the Fourier transform when as Fourier series is the correct answer. 

 

In the next chapter we will talk about DFT and FFT which is how these tools are used. 
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Summary 
 

1. Fourier series is not intended for aperiodic signals. 

2. Fourier transform is an extension of the Fourier series and applies to aperiodic 

signals by assuming that the period of the signal is infinite.  

3. This assumption results in a spectrum that is continuous since the fundamental 

frequency is now zero.  

4. The continuous-time Fourier Transform (CTFT) of aperiodic signals is 

continuous. 

5. The discrete-time Fourier Transform (DTFT) is developed in exactly the same 

way as the CTFT assuming that fundamental period approaches infinity. 

6. This also results in a continuous spectrum  but on that repeats same as DTFSC. 

7. We can use the DTFSC to compute a DTFT of a periodic signal.  

8. The DTFT of a periodic signal is a sampled version of the DTFSC. 
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