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Trellis Coded Modulation (TCM) 
 
Trellis Coded Modulation Tutorial  
Before reading this tutorial, make sure you have read the tutorial on Convolutional coding and 
Modulation. This is essential. 
 
What does a rate 1/2 convolutional code do? It takes one bit, codes it, puts out 2 bits. This is 
something that is done at the digital level. These 2 bits are then modulated (i.e. converted to 
analog form via a sinusoidal carrier) and transmitted. The coding is a digital function and 
modulation which is an analog function, are done separately and independently in most 
modulations. In Trellis Coded Modulation (TCM), however the two are combined in one 
function.  
 
TCM concepts 
 
Euclidean Distance 
A straight line distance between any two points is called the Euclidean distance. For a point p1 at 
(x1, y1) and another point p2 at (x2, y2), the Euclidean distance is given by the familiar formula 
 

2 2
1 2 1 2( ) ( )x x y y− + −  

  
It is implicit that this distance is the shortest distance between these points. The Euclidean 
distance is an analog concept, the very concept of distance that we normally use day-to-day in the 
world of real numbers. For signals, we define this distance in the I-Q plane. In Figure 1 we have a 
8PSK signal constellation. The radius is equal to 1 and represents the maximum amplitude. Each 
point of the constellation is a certain combination of a particular amplitude and phase. The 
distance between these points is can be measured in the manner described above and these are 
given in the Figure below. The distances given in Figure 1 are squared and are called Squared 
Euclidean Distance (SED). The smallest of these distances is called the Minimum Squared 
Euclidean Distance (MSED), designated as for a particular constellation. 2
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Figure 1 – 8 PSK constellation and squared Euclidean distances between symbols 
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Hamming distance 
 
Just as real numbers have a concept of distance, so do the binary numbers. Take two binary 
numbers, 011011 and 101101. The distance between these is the number of places these two 
numbers differ. And that number is 4. This distance is called the Hamming distance between 
these numbers. The distance would be zero, if these two numbers were the same. A zero distance 
means the numbers are the same, same interpretation as in Euclidean concept of distance. 
 
We distinguish these two types of distances by recognizing that one belongs to the analog world 
of real numbers and the other to the binary world. Both concepts are useful in signal processing. 
In coding Hamming distance is most often used as a performance metric whereas it is Euclidean 
distance in the analog world.  
 
Distance between sequences 
 
We can also talk about Euclidean distances between sequences by comparing distances between 
corresponding points of the sequences. Let’s take for example an 8PSK signal that consists of a 
sequence of these symbols. 
 
S0  S3  S2  S1  S0 
 
In bits, we can map these as: 000 011 010 101 100 000 
 

0

2

4

6

1

3

5

7
.586

2.0
3.414

4.0

0(000)

2(010)

4(100)

6(110)

1(001)

3(011)

5(101)

7(111)

 
 

Figure 2 – Euclidean and sequence Hamming distance 
 
The Euclidean distance for this sequence is the distance between each symbol in this sequence 
and a reference sequence. If we designate the all-zero-symbols as the reference sequence, then 
the squared Euclidean distance (SED) is the distance between each one of these symbols and the 
symbol S0.  
 
s0 to s0 = 0.0, s0 to s1 = .586, s0 to s2 = 2.0, s0 to s3 = 3.414 
 
The  Sum of the Squared Euclidean Distances (SSED), also called d2

free of this sequence, from 
the all zero sequence is  3.414 + 2.0 + 0.586 = 6.0 
 
This cumulative distance gives a feeling of how easy or difficult it would be to mistake one 
sequence for another. For the reference sequence we could have used any other sequence than the 
all zero, and the results would be the same.  However using an all-zero sequence is convenient 
and conventional. 
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Trellis Coded Modulation (TCM) 
 
TCM uses many diverse concepts from signal processing. In simplest terms it is a combination of 
coding and modulation, hence it name Trellis Coded Modulation, where the word trellis stands 
for the use of trellis (also called convolutional) codes. Whereas we normally talk about coding 
and modulation as two independent aspects of the communications link, in TCM they are 
combined. 
 
TCM is a complex concept to understand particulalry due to the non-linear nature of the 
performance. It uses ideas from modulation and coding as well as dynamic programming, lattice 
structures and matrix math. A convolutional code that has optimum performance when used 
independently may not be optimum in TCM. Gray coding is helpful in uncoded signalling and 
constellation mapping, but not always so in TCM. So it is a not an easy topic and my hats off (if I 
wore one) to Mr. Ungerboeck and others who came up with it. 
 
Fortunately, there is not a lot of math to deal with here. But you will need to know concepts of 
convolutional codes, trellis, lattice, cosets, and coset generators. 
 
Communications theory says that it is best to design codes in long sequences of messages. The 
allowed sequences should be very different from each other. The receiver can then make a 
decision between sequences using their statistics rather than on symbol-by-symbol basis. When 
decoding this way, the probability of error is an inverse function of the sequence length. In 
general form the probability of error between sequences is given by the expression 
 

 
2 2

min / 2d
ep e σ−∼  

 
where dmin is the sequence Euclidean distance between sequences and is σ2 the noise power. We 
measure the performance of TCM (and many other schemes) by Asymptotic Coding Gain 
(ACG). This is the gain obtained over some baseline performance at high SNR in a Gaussian 
environment. AGC is not achievable in practice because we do not transmit signals at high SNRs, 
have hardware and channel imperfections that depart from  Additive White Gaussian Noise 
(AWGN) assumptions. So recognize that all gains quoted herein are maximum possible only in 
theory. Actual numbers are determined by test and simulation in the given environment. 
 
The functions of a TCM consist of a Trellis code and a constellation mapper as shown in Figure 
3. TCM combines the functions of a convolutional coder of rate / 1R k k= +  and a M-ary signal 
mapper that maps 2kM =  input points into a larger constellation of  12kM +=  constellation 
points. 
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Figure 3 – A general trellis coded modulation 
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For k = 2, we have a code of rate 2/3 that takes a QPSK signal (M = 4) and putsout a 8-PSK 
signal (M = 8). So instead of expanding the bandwidth as the signal goes from QPSK to 8PSK, it 
instead doubles the constellation points. It is kind of an upgrading system, where you take a 
chosen signal and upgrade it to another with larger number of constellation points as shown in 
Figure 4 below. 
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Figure 4 – Constellation doubling in TCM. A QPSK signal transmitted using a 8PSK 
constellation. 
 
 
Main points of a TCM are 
 

1. TCM is bandwidth efficient modulation which accomplishes this by the use of 
convolutional coding. 

2. It conserves bandwidth by doubling the number of constellation points of the signal. This 
way the bit rate increases but the symbol rate stays the same. 

3. Convolutional coding constrains allowed symbol transitions, creating sequence coding.  
4. Unlike a true Convolutional coding, not all incoming bits are coded.  
5. Increasing the constellation size reduces Euclidean distances between the constellation 

points but sequence coding offers a coding gain that overcomes the power disadvantage 
of going to the higher constellation. 

6. Performance is measured by coding gain over an uncoded signal. 
7. The decoding metric is the Euclidean distance and not Hamming distance. 
8. Ungerboeck originally proposed TCM which used set-partitioning and small number of 

states with code rates that varied with the input signal type. 
9. Pragmatic TCM uses a less than perfect rate ½ convolutional code with constraint length 

equal to 7 or 9. This is a widely available code and its use makes TCM less expensive to 
implement. 

10. The constellation mapping in set partitioning is based on natural numbering where as 
gray coding is preferred in pragmatic TCM.  

 
TCM is a general concept and by varying k, we can create a QPSK, 8PSK or higher level 
signals as shown in Figure 5. All of these are types of TCM.  
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Figure 5 – General trellis coded modulation 
(a) BPSK, code rate 1/2, output QPSK (b) QPSK, code rate = 2/3, output 8PSK 
(c) 8PSK, code rate = 3/4, output 16QAM 
 
Notice that in each case, the code rate is different. But they are all called TCM. The coding adds 
just one extra bit to the symbol bit size. The symbol size increases from k bits to k + 1 bits. If 
coding increases the bit rate by 1 extra bit, then we need to double the constellation size to 
accommodate this bit as we see below, where L is original number of bits per symbol. 
 

12 2 2L L+ = ×  
 
So if original signal is BPSK, then a TCM encoder will put out a QPSK, a QPSK will become 
8PSK and if 8PSK was chosen, it becomes a 16QAM signal. As constellation expands but the 
signal energy is kept the same, the distance between the symbols decreases. That implies a 
worsening of a performance, not improving. So where is the improvement coming from?  
 
We start with a given bandwidth B, because in real life this is a big constraint. From this 
bandwidth, we determine the maximum possible symbol rate, which is never more than 2B but 
usually less. Now determine the size of the alphabet that can deliver the needed signal BER at the 
given available power. 
 
The uncoded QPSK signal (k = 2) is TCM'd 
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Let’s say that we intend to transmit a QPSK signal. Figure 6 shows the constellation of a QPSK 
signal of amplitude = 1. The minimum Euclidean distance between the four constellation points is 

min 2d = . Now we draw the trellis of this QPSK signal which is a trivial case as in Figure 6 (b). 
 

s0 (00)s1 (01)

s2 (11) s3 (10)
t = 0 t = 1 t = 2

s0 (00)

s1 (01)

s2 (11)

s3 (10)

 
Figure 6 – QPSK signal constellation and its trellis 

(a) Four constellation points of QPSK, (b) the signal trellis of a QPSK signal which 
allows all transitions at each time period. 

 
This trellis shows how symbols are transmitted in an uncoded QPSK signal. Sixteen paths are 
shown in two time periods. Any of these 16 paths is possible for an uncoded signal. At time t = 0, 
we can pick any of the four possible symbols, s0 to s3, and then same at each subsequent time tick, 
again we can pick any of the four possible symbols. It is trivial but I want to get across the point 
that there are no transition restrictions in an uncoded signal. All sequences are possible ergo, this 
signal has no sequence coding.  
 

t = 0 t = 1 t = 2

s0 (00)s1 (01)

s2 (11) s3 (10)

s0 (00)

s1 (01)

s2 (11)

s3 (10)

 
Figure 7 – SQPSK signal constellation and its trellis 

(b) Four constellation points of S-QPSK, (b) the signal trellis of a S-QPSK signal which 
allows only three transitions from each point at each time period. 

 
In Figure 7, we show the trellis for a staggered QPSK (also called offset QPSK) and we see that 
here we do have restrictions on what transitions are allowed. From each state, we can only go to 
the two adjoining symbols. 
 
The Minimum Squared Euclidean Distance (MSED), is the minimum squared distance 
between all points of a constellation and is usually the distance between any two adjacent points. 
The decoder on the receive side makes the decision about which symbol was sent based on which 
decision region the signal falls in sort like a dartboard. The error performance is a function of the 
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MSED, d2
min which for signals of Figure 6 and 7, is 1.414. 

LOG BER vs Eb/No Ideal curves
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Figure 8 - Ideal BER vs. Eb/N0 in AWGN environment 

 
Let’s say we want to transmit a QPSK signal, uncoded with a BER of 10-5. This is going to 
require 9.6 dB of energy per the ideal Eb/No vs. BER relationship. If that much power is not 
available because the transmitter is small, then an options is to add a code of rate 2/3 to reduce the 
BER which will give this BER at a smaller Eb/N0. But then we have a another problem.  If we 
keep the same bit rate for the information bits and let the coded bit rate increase to accommodate 
the overhead bits, then bandwidth requirements increase by the 1/R. So addition of coding 
increases the bandwith by 3/2. If we cannot allow the bandwidth to change, then information rate 
will have to decrease by the same proportion. 
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Figure 9 – Adding independent convolutional coding to a QPSK signal increases its bit rate 
and required bandwidth by the code rate (a) uncoded signal (b) Add a rate ½ code infront 
of the QPSK modulator but this increases the symbol rate. (c) add rate 2/3 code and 
transmit 8PSK signal. 
 
For the QPSK example, before coding, the information bit rate was 2 bps, and after adding one bit 
for coding, the bit rate becomes 3 bps. The symbol rate which was 1 sps before coding is 1.5 sps 
afterwards. What happens to bandwidth when you increase the symbol rate from 1 to 1.5? As 
symbol rate is increased, the bandwith (as measured by the frequency of the first null) also 
increases. A signal with symbol rate of 1 sps has a lowpass bandwidth of 1 Hz, a signal of 2 sps 
has a bandwidth of 2  Hz and so on. The bandwidth of the signal increases from 1 Hz for the 
uncoded signal to 1.5 Hz for the coded signal. 
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Figure 10 – Symbol rate vs. required bandwidth of a PSK signal. 
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For PSK as long as the symbol rate is the same, all M-PSK modulations have the same 
bandwidth, whatever the M. Now look at Figure 10 where required bandwidth is a function of the 
bit rate instead of symbol rate. All three of these signals carry the same bit rate but 8PSK requires 
the least bandwidth. The bandwidth requirements for a given bit rate decrease as M is increased 
in a M-PSK signal which is what is meant when these are called bit-efficient modulations. 
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Figure 11 – For same bit rate, the required bandwidth decreases as M increases in a M-PSK 

signal. 
 
In third option in Figure 9, we move up in modulation order and in this way can transmit a signal 
which has coding but without changing the bandwidth or the spectrum. Now the problem is that 
8PSK symbols are closer together. Looking at the curve from Figure 8 we see that it needs app. 
3.5 dB higher power to deliver the same BER.  Can a code of rate 2/3 give us a coding gain of at 
least 3.5 dB? Because that is the only way this idea will be work. Otherwise we have not gained 
anything over the uncoded QPSK option. 
 
The coding gain of coded signal over an uncoded signal 
 
The coding gain of a coded signal is given by 
 

2
/ /

2
min/ /

free coded s coded

uncoded s uncoded

d E
d E

γ =   (1) 

 
where dfree/coded is equal to the coded sequence Euclidean distance and dmin/uncoded is minimum 
distance between the signals in the uncoded constellation as previously defined. This coding gain 
is referenced to the baseline signal. We are starting with QPSK and want a BER of 10-5. We said 
that this requires a Eb/N0 of 9.6 dB. The number we come up for coding gain from Eq. 1 is 
counted as reduction from the baseline Eb/N0. Fact that 8PSK actually requires a higher Eb/N0 
than the QPSK baseline is accounted for in Eq. 1.  
 
 So even though , if we can increase min/ min/coded uncodedd d< / min/free coded uncodedd d>  we will get a 
positive gain. We know what dmin is, but what is dfree? 
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How do you measure the Euclidean distance of a coded signal when in fact, its constellation 
Euclidean distance is smaller than dmin. Now we need to talk about distances between sequences 
rather than distances between signals.  
 
dfree is defined as the Euclidean distance of a coded signal in terms of the smallest possible 
distance between all allowed sequences. Instead of checking all possible combinations, this 
distance is measured from the all-zero sequence, same as the measurement of Hamming distance 
and Hamming weight, which are both referenced to an all-zero code word. 
 
Let say that we transmit an all-zero message. During decoding, errors occur and wrong trellis 
path is followed by the decoder. The only way, the decoder can get depart and then back to the 
correct path, which is the all-zero path, is by diverging and then remerging as shown below.  
 
 

s0 (00)

s1 (01)

s2 (11)

s3 (10)  
 
Figure 12 – diverging and remerging of alternate sequences. The correctly decoded 
sequences is the upper straight line. The shortest incorrectly decoded sequences is the 
darker 2 segment path. 
 
The Euclidean distance of a coded signal is defined as the smallest distance between an all-zero 
sequence and one that diverges from it and then remerges. What exactly does that mean?  
 
Remember that each sequence is a set of demodulated symbols. When two paths diverge, it 
means, there was an error and the decoder made a wrong decision. Assuming that the probability 
of such error is small, at subsequent junctions, the further decisions should take the path back to 
the correct one. A small allowed path which incorrect is more likely than a long one, so the 
distance of this small path is a measure of the error correcting capability of the code. This is the 
same concept as when a receiver is most likely to pick neighboring signal points because they are 
most like the correct signal, rather than picking one that is quite different, as such the 
fundamental idea behind Maximum Likelihood Decoding (MLD). 
 
In the example of the simple trellis above we see that if an error is made at the time t = 0 and the 
path diverges, then it can get back to the correct sequence in only two segments as shown. The 
sum of the squared Euclidean distanced for this path is called the free distance, dfree of the code. 
 
The Euclidean distance here is determined by looking at the diverging path followed and its 
minimum distance from the all-zero path, symbol by symbol. For the example above, this is sum 
of SED of each of the two segments. 
 

2 2
/ min min

2 2
4

free codedd d= +

= +
=

2d
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Let’s compute dfree and the coding gain of a rate 2/3 convolutional code to see what it can do. 
 

+ ++
 

     
Figure 13 – a Rate 2/3 convolutional encoder 

 
This is a four state convolutional code. Looking at the above diagram you can write down its 
transfer function. It is a systematic encoder since two uncoded bits go through and are appended 
by one parity bit. 
 
We are going to look at the performance of this code based on two different bits to symbol 
mappings, in (b) the symbols are mapped in the natural binary order and in (c) they are mapped 
with Gray coding so that adjacent bits differ by one bit only. 
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Figure 14 – (a) Mapping the 8PSK symbols (b) Natural mapping, (c) Gray coding 
 
Note that although d2

min for a QPSK signal was 2.0, the same number is 0.586, nearly 75% 
smaller for 8PSK.  
 
We write down the trellis of the 2/3 convolutional code by stating with 0’s in the memory 
registers and then putting in all three bit combinations through the registers. (See Convolutional 
Coding tutorial on how to do this.) 
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Figure 15 - Trellis of a rate 2/3 convolutional code, (a) Trellis with bit assignments (b) each 
path replaced with its SED (c) Three segments that diverge and then merge back to state 00. 
 
In (a) the trellis shows the four possible states of the registers with each line diverging in a bit 
combination in order from top to bottom. In (b) we replace the symbols by their squared 
Euclidean distance from the zero symbol reference. (These distances are written on the side rather 
on the lines to keep the diagram easy to decipher.)  At each state, there are four different 
diverging paths. 
  
In order to determine the coding gain, we need to know the dfree of this code. To determine the 
minimum distance path, we follow from each state the path with the smallest squared distance 
(but not 0). This is 2.0 for the path starting at state 00. This takes us to state 2. From here we 
follow again the minimum distance path, which is 2.0. This takes us to state 4 and from here we 
return to state 0 via a path that has a squared distance of 0 .586. There is no other path that can 
take us back to 00 state and has a smaller total distance. 
 
The total minimum squared Euclidean distance (MSED) for this sequence is the sum all three of 
these squared distances. 
 
2 + 2 + .586 = 4.586.  
 
To determine the coding gain, we divide this distance by the , the minimum distance of the 
uncoded QPSK constellation which 2.0 The coding gain from Eq. 1 (assuming that both coded 
and uncoded signals have same energies, is 

2
mind

 
4.5610log

2
⎛ ⎞ =⎜ ⎟
⎝ ⎠

3.6 dB 

 
This is great but maybe we can do better. Let’s try an alternate mapping of the symbols (Gray 
coding) as shown in (c). This gives the trellis of Figure 15. As before, we convert each symbol to 
its distance from the 0 symbol and then we follow the minimum path. This time to our chagrin, 
we only get a total MSED of  
 
.586 + .586 + .586 = 1.758, or actually a loss of approximately 0.5 dB. 
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So we see that mapping is an important consideration. Gray coding was not helpful here. Adding 
any code of rate 2/3 in front of a 8PSK modulator is not beneficial.  
 
Now see how TCM can help improve on this. 
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Figure 16 – Euclidean distance change if the symbol to bit mapping is changed. 
 
Ungerboeck’s brain storm 
 
Ungerboeck had an idea to improve upon this code by a mapping the signals in a special way 
called set partitioning.  The basic idea is to map k information bits to 2k+1constellation points such 
that we can limit the transitions to occur only along the largest SED. As the subsets are 
partitioned, the signals get further apart increasing the Euclidean distance between the signals in 
that set.  
 
The Figure below shows this process. 8PSK signal constellation is partitioned (using lattice 
structure and terminology). We have three incoming bits from the code. They are 
 
b1   b2   b3  
 
Proceed with bit b3 and using this bit, proceed down the decision tree as shown below. 
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b1 = 1b1 = 0 b1 = 1b1 = 0 b1 = 1b1 = 0 b1 = 1

b3 b2 b1

b1 b2 b3 000 100 010 110 001 101 011 111  
 
Figure 17 – Partition of a 8PSK constellation to ever increasing Euclidean distance subsets. 
 
This Figure shows how the 8 points of 8PSK are successively portioned into disjoint cosets such 
that the SEDs are increasing at each level. There are total of four partitions counting the first un-
partitioned set. At top-most level, the MSED is 0.586. At the next level, where there are only four 
points in each of the two cosets, the MSED has increased to 2.0 and at the last level, the MSED is 
4.0. Each subset is also called a coset and by the lattice terminology, we can show the partition 
with its coset generators in this way.  
 

b3 = 1 b3 = 0

b2 = 1 b2 = 0
b2 = 1 b2 = 0

 
 
Figure 18 – Lattice structure and coset generators for the 8PSK set partition (Top 3 levels) 
 
Since the top two levels have smaller distances, these errors are more likely, we will use the 
coded bits to traverse through this part. b3 to and b2 which are coded can be used to decide which 
partition (or coset) to choose and then we can use the uncoded bit at the last level to pick the 
signal transmitted. The most significant bit b1, used at the last level, has a large Euclidean 
distance from its complement and would require an error of 180 degrees to be corrupted.  
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Example: 010 bits would be mapped to symbol s2 using this mapping. 
 
Ungerboeck approach leaves the most significant bit uncoded and lets it take care of itself via its 
large Euclidean distance. This turns out to be the key to larger coding gains of this approach. 
Only the bits that decide at the top levels with smaller SEDs are coded, thus reducing coding rates 
and increasing bit efficiency.  
 
OK, so here is how we can do TCM using a lower code rate leaving the MSB uncoded. 
 

  
Figure 18 – 4 state rate 1/2 convolutional code as a basis of TCM 
 
Now instead of using a rate 2/3 code on both incoming bits, we leave one bit uncoded and then 
use a rate ½ code on the other bit. Out come three bits same as with a rate 2/3 code. However, the 
second approach is more promising since a rate ½ code has a better coding gain.   
 
This is TCM at its most basic, to selectively code only some of the bits and take advantage of the 
increasing Euclidean distances obtained by set partitioning, then leaving uncoded those bits that 
are protected naturally by their large SED. 
 
We start with a four state encoder. First we draw the trellis of the rate ½ convolutional coder. As 
we did for the rate 2/3 code, this trellis is converted to squared distances and then a minimum 
length path is identified. 
 
 

0(00)

1(01)

0(10)

0(10)

1(11)

1(11)

0(00)

1(01)

State 1 = 00

State 2 = 10

State 3 = 01

State 4 = 11

0(0.0)

1(2.0)

3(2.0)

2(4.0)

2(4.0)

0(0.0)
1(2.0)

3(2.0)

1(2.0)

1(2.0)

3(2.0)

 
 
Figure 19 – Trellis of the rate 1/2 code (one bit in, 2 bits out) 
 
 
 
The minimum length path is labeled as  01  10  01. The corresponding distances from the 00 bit 
symbol are 2.0, 2.0, 2.0, the sum of which is 6.0 The MSED for this code is 6. The coding gain is 
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610log 4.77
2

dB⎛ ⎞ =⎜ ⎟
⎝ ⎠

  

 
This is better than the 3.6 dB gain we had from the rate 2/3 code, so this looks promising. But not 
so fast!  This is just the coding gain of the rate 1/2 code. What about the uncoded bit. We have 
not accounted for that.  
 
Modifying the code trellis to account for the uncoded bit 
 
Now comes the complicated part. We want to modify this trellis to show the effect of the uncoded 
bit.  We have 3 bits going into the modulator, b1, b2, b3.  b2 and b3 are the result of coding. b1 is 
uncoded. At each state we have two coded bits incoming as well as one uncoded bit, so each path 
doubles to account for the two choices for the uncoded bit. At state 00, if coded bits are 10, then 
we can get either 110 if uncoded bit is 1 or 010 if it is 0. This doubling of choices is called 
parallel transitions. (This is of consequence only in a 4-state code.)  
 

0(00)

1(10)

0(01)
1(11)

00(000)

11(110)

10(101)

01(011)

00

10

01

11

10(100)

01(010)

11(111)

00(001)

 
 
Figure 20 – (a) Code rate 1/2 trellis, (b) code rate 1/2 trellis modified to include the third 
uncoded bit. 
 
Modify the whole trellis to incorporate parallel transitions at each state. Now we draw the trellis 
for the TCM which has both coded and uncoded bits. At each junction, we now have an option of 
getting either a 0 or 1 uncoded bit in addition to the 2 coded bits. Each trellis path is now doubled. 
The dashed lines in Figure 20, 21 indicate the uncoded bit is a 0 and the solid line means the bit is 
1. Now there are 3 bits inside the parenthesis which is symbol. The first bit is the uncoded bit and 
the last two are the coded bits from the top trellis.  
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00(000)
11(110)

10(101)

00(001)

01(011)
01(011)

10(100)

01(001)

00

10

01

11

0, 4

2.0, 2.0

3.414, .586

.586, 3.414

3.414, .586

0, 4.0
1(2.0)

.586, 3.414

2.0

2.0

.586

10(100)

01(010)

11(101)

00(000)

10(101)

11(111)

S4
S0

S2
S6

S0
S4

S1
S7

S3
S7

S1
S3

11(111)

00(001) S5

S3

S6
S2

.586

.586

.586

 
  

Figure 21 – (a) Modified trellis for the uncoded bit , (b) replace each bit combination by 
chosen symbol map, )c) for each path, pick the one with the lowest Euclidean distance to 
symbol S0, (c) Find shortest path that starts at state 00 and then remerges back (in dark 
lines) 
 
A parallel decision making process occurs in decoding the incoming signal. First the decoder 
makes a decision about the coded bits and then the uncoded bit, sending it down one of the four 
paths at each state. Even if the decoded decision is correct, there would still be a possibility that 
the uncoded bit will be decoded incorrectly. Now we need to determine which of these two 
independent events i.e. the error probability of the coded vs. the uncoded bits is larger. The dfree of 
this code is 
 
dfree = 2 + .586 + 2 = 4.77 
 
Now look at the parallel paths at t = 0, state 00. We have two parallel pairs, 100 and 000 pair and 
the 110 and 010 pair. If you check these against the set partition of Figure 17, (Note that in Figure 
17, the bit order is b3 b2 b1 whereas in the trellis is it b1 b2 b3!) Each pair is 180 degree phase shift 
apart. But this corresponds to a MSED of 4.0, and it is smaller that the sequence SMSED (4.77), 
this error is more likely. In other words, it is more likely that the uncoded bits will be decoded 
incorrectly that the two coded bits, simple because they have a larger SMSED. Of course, this is 
not always true in TCM, This is also called a single stage error.  
 

2
minδ  = 4.0  (not dmin, but just the SED at the bottom level of the partition.) 

 
The terminology is: 2

freeδ  is the sum of the MSED of the coded bits and 2
minδ  is distance at the 

lowest level which contains the uncoded bit. It is the smaller of the two that determine the overall 
performance.   
 

[ ]2 2 2
minmin , min 4.77,4.0free freed δ δ⎡ ⎤= =⎣ ⎦  

 
We take the minimum of these two and then divide by  to get the coding gain.  2

min/uncodedd
2
min/uncodedd  is equal to 2.0 for QPSK. 
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Coding gain = 
410log 3
2

dB⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 
This is not as good as 3.6 dB gain we got when we used the rate 2/3 code alone, but we did get 
this gain without any increase in bandwidth or symbol rate, which is a remarkable thing. 
 
The reason why this number is low is because this a limiting case due to single state errors and 
this limits the coding gain to 3 dB. No matter what code we use, as long as we have parallel 
transitions, the coding gain is limited to 3 dB. With four state convolutional code, we cannot do 
any better than that. It is our limiting case. 
 
So now we have to admit that although we computed the coding gain of the rate ½ code as 4.77 
dB, we are not going to see this gain in TCM because it is trumped by the smaller Euclidean 
distance of the uncoded bit. We need to do better than that. We can do that by eliminating the 
parallel transitions. One way to eliminate parallel transitions is to increase the number of states. 
This way we can assign paths so that they do not have parallel transition.  
 
Figure below shows the redone trellis for the same code but one that has 8 states instead of 4. 
(This is done by increasing the number of memory registers from 2 to 3.)  
 
0426

1537

4062

5173

2604

3715

6240

7351

0

4

2

6

7 53
1

4

2

0
6

1

3

5

7

4
2
6

600

6
2
4
0

   

0(000)

2(010)

4(100)

6(110)

1(001)

3(011)

5(101)

7(111)

 
 
Figure 22 – Trellis of a code of rate 1/2 with eight states (b) bits to symbol mapping 
 
With more states available, we assign the four paths of Figure 21 to other states so there are no 
parallel transitions. In the Figure above, the left side lists the symbol numbers possible at each 
state. At state 0, we take path 6, because it has the smallest distance, from there we go to symbol 
7 and then symbol 6 again. Without proving, we state that this path has the smallest SED. The 
sum of each of the distances is 
 
s0 to s6 = 2.0,  s0 to s7 = .586,  s0 to s6 = 2.0 
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2 + .586 + 2 = 4.586 and now the coding gain is 
 
10 log (4.586/2) = 3.7 dB 
 
This is an improvement over the case of four states which had a coding gain of only 3 dB and also 
an improvement over the rate 2/3 code by itself. More states improve this yet further. Here is a 
list of coding gains possible as number of states is increased still further. We conclude that any 
TCM with number of states greater than 4 can beat the performance of using the convolutional 
code alone.  
 
Table I – Coding gain vs. number of states in a 8PSK TCM 

Number of States Coding Gain, dB 
4 3.0 
8 3.6 

16 4.1 
64 4.8 

128 5 
256 5.4 
512 5.7 

 
The examples have all been for 8PSK. But in TCM we can we can start with a 8PSK and then go 
to 16QAM as the final signal or any other such doubling. In V.32 modulation a constellation of 
32 points is used.  
 
To examine how 8PSK to 16QAM would work, we take 3 incoming bits.(u stands for uncoded.) 
 
ub1   ub2   ub3 
 
Of these, we would code bits ub2 and ub3 with rate 2/3 encoder to get three bits, and now we have 
 
ub1   cb2   cb3   cb4 
 
Starting with cb4, we would then select a signal using the partition in Figure 23. 
 
Example: we have 1011, this would map to symbol s11. Note that the last mapping is done based 
on the first uncoded bit. It has a ED which is 16 times larger than at the first level and hence 
offers good error protection on its own. 
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0 1

0

0 0 0 0

01 1

1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

dmin = 2a
d2

min = 4a2

d2
min = 8a2

d2
min = 16a2

d2
min = 32a2

 
 
 
Figure 23 – 16 QAM partition 
 
If the at the lowest distance is 2a with SED equal to 4a2, then at the next level it is 8a2, then 16a2 
and then 32a2 and so on, doubling each time. Compare this to the SED of QPSK to which we 
would compare this to determine the coding gain. The coding gain based on this would be 4.4 dB 
A list of coding gains possible for 16QAM are given below. 
 
Number of states and coding gain for 16QAM 
 
States Gain, dB 
4 4.4 
8 5.3 
16 6.1 
64 6.8 
128 7.4 
 
 
The Pragmatic TCM 
 
Each version of TCM as created by Ungerboeck, requires a different rate code. To avoid this 
problem, Viterbi (see Ref 5) suggested the use of the 64 state standard rate ½ convolutional code 
which had been a de facto standard in communications for quite a while. The other advantage of 
using this “off-the-shelf” code is that with minor modification it can be used to decode both the 
coded and the uncoded bit. The use of this code and not the custom codes of the original concept 
is called the Pragmatic Approach. Pragmatic, meaning practical but not necessarily optimum, 
because you use what you have available. Viterbi algorithms can be used to decode the pragmatic 
TCM so this approach is popular, although it is not as effective as the set-partitioning approach of 
Ungerboeck. 
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The pragmatic approach uses the common ½ rate coder (which can be punctured to provide all 
other rates.) and can create the QPSK, 8PSK and 16QAM signal TCMs.  
 

+

+
Rate 1/2, K = 7

8PSK

Modulator

M = 2k = 8

8PSK

symbols

CarrierQPSK to 8PSK TCM

2
bits

4PSK
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M = 2k = 4

QPSK

symbols

Carrier
BPSK to QPSK TCM

+
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Rate 1/2, K = 7
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bits

4
bits

16QAM
Modulator

M = 2k = 16

16QAM

symbols

Carrier

+

+
Rate 1/2, K = 7

+

+
Rate 1/2, K = 7 x

8PSK to 16QAM TCM  
 
Figure 24 - Pragmatic TCM uses a standard rate 1/2 convolutional code with modified 
Viterbi decoding. 
 
Decoding using the Viterbi Algorithm 
 
Viterbi algorithm uses a metric and tracks this metric for several trellis paths at once. The path 
with larger metric is dropped when it merges with another. In hard-decision Viterbi decoding, this 
is done using the Hamming distance as a metric. In TCM the decoding is done with soft-decision 
algorithm and Euclidean distance is used as the metric. The objective is to track n possible 
sequences, keep track of cumulative MSEDs. When paths merge at a state, follow only the one 
with the smallest metric.  
 
Multi-dimensional TCM 
 
BPSK, PAM are one dimensional modulations. QPSK is a two dimensional modulation 
composed of two BPSK signals in quadrature. 8PSK similarly is also a 2D modulation. The TCM 
we have been talking about so far is called  2LD-MPSK-TCM, with L = 1, a 2LD modulation 
with a dimensionality factor L = 1. 
 
A method of increasing the dimensionality of TCM (L > 1) signals was proposed by Wei. (See 
really excellent paper on this by Pietrobon, Ref. 4) The term L denotes L dimensions of 2D 
MPSK signals. With L = 1, we transmit just one TCM symbol. With L = 2, we transmit 2 symbol, 
so that the number of symbols transmitted is equal to L. Another way multi-D is referred is by L x 
MPSK. So if we say 3 x MPSK, that is 3 symbols, and a 4 x MPSK is four symbols. All of these 
are 2D signals so, the total dimension is 2L. The 4 x MPSK is also called 8D TCM. 
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The main concept in multi-dimensionality is increasing the number of symbols created in one 
processing period. The transmitted symbols are generated together and this co-generation creates 
dependence and allows better performance. The term multi-dimensionality does not mean 
anything other than a form of multi-processing. We do not have a multi-dimensional signal in the 
usual sense here. In fact typically multi-dimensionality implies independence and here we have 
the opposite. So the term is confusing. It should have been called higher-order TCM instead. 
 
The advantage of multi dimensional TCM are 
 
1. We can transmit fractional information rates. Instead of the effective code rate being 2/3 as it is 
in 1 x 8PSK, here it can be higher. We can reduce the code overhead by effecting more than one 
symbol so we can use code rates like 5/6, 8/9 and 11/12. 
 
2. Better bit efficiency is possible. We define bit efficiency as number of input information bits 
divided by the number of symbols transmitted in one processing period.  
 
3. Smaller Peak to average ratio –The peak to average ratios are seen to go down for these signals 
since random coherence problems are lessened.  
 
4. No additional hardware complexity, we can use standard rate ½ codes (punctured) with 
standard decoding. Multi-D TCM typically uses the pragmatic version of TCM. 
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x2

+

+

+
Z1 Z2

 
 
Figure 25 – 2 x 8PSK, 4 input bits, 2 remain uncoded, 2 are coded to produce 4 bits for a 
total of 6 bits going into the constellation mapper. The constellation mapper uses a 
algorithm to reorder these bits to output 2 symbols. 
 
This Figure shows the conFigureuration for generating a 2 x 8PSK signal. 4 bits come in. 2 of 
these go into a rate ½ encoder and generate 2 parity bits, for a total of 6 bits. These six bits are 
then mapped in a special way by the constellation mapper.  It is this mapping function that creates 
the symbol inter-dependency. The effective code rate is 2/3 and the bit efficiency as defined by 
number of information bits per symbol is 2 bits per symbol. 
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Figure 26 - 2 x 8PSK bit efficiency = 2.5 bits per symbol, code rate of 5/6 
 
By playing with code rate, such as a rate 2/3 encoder in Figure 26, with five input bits producing 
the 2 symbols, we can change the effective code rate. In example of Figure 26, the code rate is 5/6 
and bit efficiency is 5/2 = 2.5 bits per symbol. 
 
The mapping function of the constellation mapper is bit more complex than in a 1 x 8PSK. We do 
not just take the six incoming bits and map them sequentially to the two symbols. There is 
processing going on inside this box. We will now examine how this mapping is done. 
 
Example: Constellation mapping of a rate 2/3  2 X 8PSK TCM (L = 2) 
 
Now imagine that we have two parallel 8PSK symbol producers. Each is numbered from 0 to 7. If 
we transmit a pair of symbols, then there are total of 64 possible pairs. Any one of these pairs can 
be mapped to the 6 input bits.  
 
 

 
 
Figure 27 – A pairs of symbols are being produced in one processing period in a 2 x 8PSK 
(or also 4 D TCM) 
 
We write the output vector of two symbols as  
 

2 1 0
1 1 1 1 1

2 1 0
2 2 2 2 2

Symbol Y y y y
Y

Symbol Y y y y
⎡ ⎤⎡ ⎤ ⎡ ⎤

== = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Table II – 2 x 8PSK signal set partitioning 
 (a) Top level                                         (b) First partition 

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77    

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77  
 
In this table II we list all 64 possible pairs of symbols. Let’s take the two neighbor points (00) and 
(01). These two sets of symbol sequences are about as close as two sequences can get. The 
MSED between them is .586. (The distance between the first symbols 0 and 0 is 0.0, the distance 
between the second symbols 0 and 1 is .586 for a total of .586) This is the smallest distance at this 
level where all pairs are possible.  
 
Now partition top level (a) into two cosets as shown in two different colors in Table II (b). There 
are two cosets in this partition. One coset can be transformed into the other by coset generator  g0 
= (0, 1).  If you take any symbol from the one set and if you add 0 to the first symbol and 1 to the 
second, you will shift position the symbol from one coset to the other. If you examine the 
sequence distance of points in the colored coset (b) you see that they are now further apart than at 
the top level. For points 00 and 11, which are two closest neighbors, the sum of MSED is (.586 + 
.586) = 1.172 at this level.  
 
 (c)      (d)  

00 02 04 06

11 13 15 17

20 22 24 26

31 33 35 37

40 42 44 46

51 53 55 57

60 62 64 66

71 73 75 77   

00 02 04 06

20 22 24 26

40 42 44 46

60 62 64 66

 
 
Now partition again. We again get two cosets, related by the coset generator g1 = {1, 1). as in (c). 
The distance between the points in the new coset has increased again.  Now the two nearest points 
are 00 and 02. The distance between these is 2.0.  
 
Now partition the shaded coset again, we get Partition (d). These points are now 4.0 apart. Now 
the two closest points are 00 and 22. The SMSED is (2 + 2) = 4.  
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We do this two more times to get to an individual signal. At the last level, the points are (4 + 4) = 
8 units apart. We partitioned the set six times to get to a single signal.  
 
Partition (e)     Partition (f) 

00 04

22 26

40 44

62 66

     

00

44

 
 
 
How the math works 
 
All of this is easily coded into a chip using simple math. Let’s take at look at each of the coset 
generator which is making decisions about which assignment to make based on the received bit. 
We have six incoming bits (after all incoming bits have been coded) and we have six partitions in 
response to each of these bits.  Let’s write down all the coset generators as we will need them, 

  
0 (0,1), 1 (1,1)
2 (0,2), 3 (2,2)
4 (0,4), 5 (4,4)

g g
g g
g g

= =
= =
= =

 

 
Now we take the six input bits and put them through this transformation to come up with the 
coded and related symbols. Take for example an incoming vector x = 010101 in form of 
 

5 4 3 2 1 0, , , , ,
(0,1,0,1,0,1)
x x x x x x=

=
  

 
We multiply each bit by its coset generator to determine which coset it falls in.  We get (0, 7) if 
math is done mod(8). 
 

5 4 3 2 1 0(4,4) (0,4) (2,2) (0,2) (1,1) (0,1)
(0,7)
x x x x x x= + + + + +

=
 

 
This looks a bit incomprehensive until you do it in binary form. Let's rewrite the coset generators 
in binary form by replacing the ordinal number with binary equivalents. 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00
11

5g
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00
10

4g
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
11
00

3g     
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
10
00

2g
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

11
00
00

1g
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10
00
00

0g  

 
The output two symbols and their constituent bits are given by  
 

2 1 0
1 1 1 1

2 1 0
2 2 2 2

Y y y y
Y

Y y y y
⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 or 

 
2 1 0 2 1 0

1 2) 1 1 1 2 2 2( , ) ( , , ), ( , , )Y Y Y y y y y y y⎡ ⎤= = ⎣ ⎦  

 
Each bit falls in a particular coset and the total vector is sum of each bit times its corresponding 
coset generator. There are six generators so index goes from 0 to 5. 
 

p
p

p gxyyY ∑
≤≤

==
50

)21 ,(  

 
For the example bit sequence for (0,1,0,1,0,1), x5, x3, and x1 are zero. Crossing these out, we get 
 

5x= 4 3

1 1 0 1
0 0 0 0
0 0 0 0

x x
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⊕ ⊕⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2 1

0 0 0 0
1 1 0 1
0 0 0 0

x x
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⊕ ⊕⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0

0 0 0 0
0 0 0 0
1 1 0 1

x
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢⊕ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

4 2 0

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

x x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⊕ ⊕⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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1  or 

 
(000) ,(111)Y ⎡ ⎤= ⎣ ⎦  

 
and this is the same as  
 

[ ]0,7Y =  in ordinal numbers. So for that given input sequence two output symbols are s0 and S7.  
 
If you take the following equation and put it in a picture form as in Figure 27, you will see that 
the symbol mapper is doing just this math. 
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5 4 3 2 1 0

5 3 1 5 4 3 2 1 0

1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1

, , ( ), ( ), ( )

x x x x x x

x x x x x x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⊕ ⊕ ⊕ ⊕ ⊕⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= + + +

 

 
The last equation says that symbol 1 consists of bits 5, 3 and 1 and symbol consists of sums of all 
the bits. This is same as the constellation mapper shown in Figure below. We can see this 
function as a kind of re-ordering or interleaving.  
 

+

+

+
x5
x4
x3
x2
x1
x0

x5

x5+ x4

x3 x3+ x2

x1+ x0

x1

Y1
Y2

 
Figure 27 - What the constellation mapper is doing for 2 x 8PSK TCM to the 6 incoming 
bits to produce the output symbols. 
 
As we increase L, the constellation mapping gets more complex. 
 
The free distance of a multi-D TCM can be increased by both increasing the number of states or 
by increasing the number of dimensions. We determine the performance the same way as before 
by determining dfree of the code trellis. Extensive list of Asymptotic Coding Gain (ACG) for a L x 
8PSK for various L can be found in Ref 1.. 
 
3 x 8PSK constellation mapper 
 
In this 3 x 8PSK TCM there are 8 input bits and it puts out 3 8PSK symbols, its efficiency is 8/3 
bits per symbol and its code rate is 2/3. 
 

Code
R = 2/3

Constellation
Mapper

Carrier

Z2

x2
x1
x0

x9
x8
x7
x6
x5
x4
x3

Z1 Z2

Z1

Z3

Z3

 
 
 
Figure 28 - 3 x 8PSK TCM, producing three symbols at a time. 
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A 3 x 8PSK generates three independent 8PSK symbols to pick from. The total number of input 
symbols, three at a time, are 8 x 8 x 8 = 512. This partition will require 9 levels, since (29 = 512) 
This is too complex to draw so I will just give the list of set coset generators, of which there are 9. 
 

0 (0,0,1) 1 (0,1,1) 2 (1,1,1)
3 (0,0,2) 4 (0,2,2) 5 (4,4,4)
6 (2,2,2) 7 (4,4,0) 8 (0,4,4)

g g g
g g g
g g g

= = =
= = =
= = =

 

 
The three symbols are given by expressions  
 

2 1 0
1 1 11
2 1 0

2 2 2 2
2 1 0

3 3 3 3

y y yY
Y Y y y y

Y y y y

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
 

1
8 7 6 5 4

2

3

3 2 1 0

0 4 2 4
4 4 2 4
4 0 2 4

0 1 0 0
0 1 1 0
2 1 1 1

Y
Y x x x x x
Y

x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0
2
2

0

1

0

 

 

5 6 2 8 4 1 7 3 0

1 0 1
(4 2 ) 1 (4 ) 1 (4 ) 1 (2 ) 0

1 1 0
x x x x x x x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + + + + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
or alternately in mod(8) math 
 

7 6 5 2
1

8 7 6 5 4 2 1
2

8 6 5 4 3 2 1
3

4 2 4
4 4 2 4 2

4 2 4 2 2

Y x x x x
Y x x x x x x x
Y x x x x x x x x

⎡ ⎤+ + +⎡ ⎤
⎢ ⎥⎢ ⎥ = + + + + + +⎢ ⎥⎢ ⎥
⎢ ⎥+ + + + + + +⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
If input bits are 101011001, then we get  
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1

2

3

4 4
4 4 2 2 mod(8)

4 2 2 1 1

100
010 mod(2)
001

Y
Y
Y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Note that there can be more than one way to subdivide so the above list is not unique.  
 
4 x 8PSK or 8D TCM 
 
NASA uses a 4 x TCM (also called 8D) for some deep space links. A 4 x 8PSK would have 4 
8PSK constellation and as such would have 64 x 64 = 4096 total possible signals. This will 
require 12 levels of partitions since (212 = 4096)  Four symbols are generates in one period. By 
adjusting the number of bits coming out of the encoder, we can create fairly large bit efficiencies 
and consequently reduce the overhead rate.  
 
The following Figure shows using a code of rate ¾ , so for this case, the bit efficiency would be 
8/4 = 2.0 bits per symbol.  
 

Code
R = 3/4

Constellation
Mapper

Carrier

Y1

Y4

b8
b7
b6
b5
b4
b3
b2
b1

x0

x8
x7
x6
x5
x4
x3
x2
x1

Y1 Y2

Y3

Y2 Y3 Y4

 
 
Figure 29 - 4 x 9PSK TCM 
To determine the constellation mapping, again we look at the coset generators. Since there are 
total of 12 levels in the 4 x MPSK partition, we have a much deeper partition. The coset generator 
which we need to map the input bits to out bits are given here for one case. Others are also 
possible. 
 

  

0 (0,0,0,1) 1 (0,0,1,1) 2 (0,1,0,1)
3 (0,0,0,2) 4 (1,1,1,1) 5 (0,0,2,2)
6 (0,2,0,2) 7 (0,0,0,4) 8 (2,2,2,2)
9 (0,0,4,4) 10 (0,4,0,4) 11 (4,4,4,4)

g g g
g g g
g g g
g g g

= = =
= = =
= = =
= = =

 
The SED at the lowest level is 16 and the transformation matrix is given by 
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1
7 3

2 8 5 1
6 2

3
7 6 4 3 2 0

4

1 0 0
1

(4 2 ) 4 2
1
1

Y
Y x x

x x x
Y x x
Y x x x x x x

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ = + + + +
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

 
8 5 1

1
8 7 5 3 1

2
8 6 5 2 1

3
8 7 6 5 4 3 2 1 0

4

4 2
4 4 2 2
4 4 2 2

4 4 4 2 4 2 2 2

Y x x x
Y x x x x x
Y x x x x x
Y x x x x x x x x x

⎛ ⎞+ +⎡ ⎤
⎜ ⎟⎢ ⎥ + + + +⎜ ⎟⎢ ⎥ =
⎜ ⎟⎢ ⎥ + + + +
⎜ ⎟⎢ ⎥ + + + + + + + +⎣ ⎦ ⎝ ⎠

 

 
If input bits are 110011001, then output bits are 
 

1

2

3

4

4 4
4 4 2 2

mod(8)
4 4 0

4 4 4 2 2 0

100
010

mod(2)
000
000

Y
Y
Y
Y

⎡ ⎤ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ + +⎜ ⎟ ⎜ ⎟⎢ ⎥ = =
⎜ ⎟ ⎜ ⎟⎢ ⎥ +
⎜ ⎟ ⎜ ⎟⎢ ⎥ + + + +⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 
Phase Invariance and TCM 
 
TCM is always used with differential encoding. Differential encoding allows recovering from 
phase ambiguity. Take a BPSK signal. Let us say that a phase shift of 180 degrees occurs, the 
received bit is now 0 instead of 1. How is the receiver to know that it was a 1? There is no way, 
unless differential encoding/decoding is used. 
 
Phase lock is a critical problem in demodulation. A 8PSK signal has 45 degrees phase shifts. 
When the signal is acquired, it is best if any phase shift near one of the allowed phases is locked 
on instead of having to worry about if it is the correct phase. Once a phase lock is obtained, then 
if the lock was incorrect then all other decoding would be valid but wrong. For example, if 
symbol 0 is shifted by 45 degrees, then symbol 7 is now demodulated as 000.  
 
Take a gray coded QPSK signal. If one symbol is locked on the loop and the resulting bits are 11 
instead of 00, the differential encoder would be able to correct this error.  The code in this case 
would be considered 180 degrees phase invariant. If a phase error of 90 degrees occur and bits 
01 are confused for 00, then differential decoder which can only correct complements error is 
unable to correct this. In this case, this code is not phase invariant for 90 degrees. Similarly 
8PSKs signal are 90 degrees phase invariant when numbered in natural order but not 180 or 45 
degrees phase invariant. 
 
 
 
Copyright 2004 Charan Langton   www.complextoreal.com 



Trellis Coded Modulation (TCM) 
   

31

Certain codes when combined with differential encoding, allow recovering from phase shift 
errors. The sequence demodulated is automatically corrected for the given phase invariance. 
 
TCM sequences are phase lock sensitive. Multi-D TCM codes offer an advantage that they offer 
phase invariance. Many different phase shifts error can be tolerated and are quickly taken out.  
 
One of the most comprehensive coverage of this material is in Ref, the book by Lin and Costello 
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Finding the MSED  

Error Symbol Errored
Symbol Const1 Const2

001 000 001 0.586 0.586
001 001 000 0.586 0.586
001 010 011 0.586 0.586
001 011 010 0.586 0.586
001 100 101 0.586 0.586
001 101 100 0.586 0.586
001 110 111 0.586 0.586
001 111 110 0.586 0.586

010 000 010 2 3.414
010 001 011 2 0.586
010 010 000 2 3.414
010 011 001 2 0.586
010 100 110 2 3.414
010 101 111 2 0.586
010 110 100 2 3.414
010 111 101 2 0.586

011 000 011 3.414 2
011 001 010 0.586 2
011 010 001 0.586 2
011 011 000 3.414 2
011 100 111 3.414 2
011 101 110 0.586 2
011 110 101 0.586 2
011 111 100 3.414 2

100 000 100 4 0.586
100 001 101 4 3.414
100 010 110 4 0.586
100 011 111 4 3.414
100 100 000 4 0.586
100 101 001 4 3.414
100 110 010 4 0.586
100 111 011 4 3.414

101 000 101 3.414 2
101 001 100 3.414 2
101 010 111 3.414 2
101 011 110 3.414 2
101 100 001 3.414 2
101 101 000 3.414 2
101 110 011 3.414 2
101 111 010 3.414 2

110 000 110 2 4
110 001 111 2 4
110 010 100 2 4
110 011 101 2 4
110 100 010 2 4
110 101 011 2 4
110 110 000 2 4
110 111 001 2 4

111 000 111 0.586 3.414
111 001 110 0.586 3.414
111 010 101 0.586 3.414
111 011 100 0.586 3.414
111 100 011 0.586 3.414
111 101 010 0.586 3.414
111 110 001 0.586 3.414
111 111 000 0.586 3.414

Error Min. sq distance
Vector Const 1 Const 2
000 0 0
001 0.586 0.586
010 2 0.586
011 0.586 2
100 4 0.586
101 3.414 0.586

Sq. Distance
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