
Intuitive Guide to 
Fourier Analysis

Charan Langton

Victor Levin



Much of this book relies on math developed by important persons in the field over the last 
200 years. When known or possible, the authors have given the credit due. We relied on 
many books and articles and consulted many articles on the internet and often many of 
these provided no name for credits. In this case, we are grateful to all who make the knowl-
edge available free for all on the internet. 

The publisher offers discounts on this book when ordered in quantity for bulk purchase or 
special sales. We can also make available on special or electronic version applicable to your 
business goals, such as training, marketing and branding issues. For more information, 
please contact us.

mntcastle@comcast.net

Website for this book: complextoreal.com/fftbook

Copyright 2016 Charan Langton and Victor Levin
ISBN- 13: 978-0-913063-26-2

All Rights reserved Printed in the United States of America. This publication is protected by 
copyright and permission must be obtained from the Publisher prior to prohibited repro-
duction, storate in a retrieval system, recording. For information regarding permissions, 
please contact the publisher.



5 | Discrete-time
Fourier transform (DTFT) of
aperiodic and periodic signals

Paul Adrien Maurice Dirac
8 August 1902 – 20 October 1984

Paul Adrien Maurice Dirac was an English theoretical physicist who made fundamental con-
tributions to the early development of both quantum mechanics and quantum electrodynamics.
He was the Professor of Mathematics at the University of Cambridge, and spent the last decade
of his life at Florida State University. Among his discoveries, he formulated the Dirac equation,
which describes the behavior of fermions and predicted the existence of antimatter. Dirac shared
the Nobel Prize in Physics for 1933 with Erwin Schrödinger. He also did work that forms the
basis of modern attempts to reconcile general relativity with quantum mechanics. Paul Dirac in
his influential 1930 book The Principles of Quantum Mechanics. introduced the "delta function"
which he used as a continuous analogue of the discrete Kronecker delta. – From Wikipedia

Whether periodic or non-periodic, discrete-time signals are the main-stay of signal pro-
cessing. Signals are collected and processed via sampling, or by devices which are inherently
discrete. Despite the fact that sampled signals “look” like their analog parents, there are
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CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM
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(b) Periodic version of the little signal with period 0N

(c) Periodic version of the little signal with period 
0N =∞
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Discrete time, n

(a) A little discrete signal

Figure 5.1: An aperiodic discrete-time signal can be considered periodic if period is assumed to be
infinitely long.

some major conceptual differences between discrete and continuous signals. The fundamen-
tal difference of course between the CT and the DT signals is the frequency ambiguity that
we experience for DT signals.

Let’s do the same thought experiment we did for continuous signals. Given a piece of
a discrete and ostensibly aperiodic signal such as in Fig. 5.1(a), we conceptually extend its
period. This signal x[n] is just 5 samples, but we can pretend that the signal is periodic with
period N0, with N0 >> 5. But then we can also say that this period is very long, maybe even
infinitely long. So if we extend the period of this signal to ∞, we basically get back the
original signal, x[n] of 5 samples, which is now surrounded by a sea of zeros.

lim
N0→∞

xN0
[n] = x[n] (5.1)

As we increase N0, in limit the result is the starting signal, but it can now be considered a
periodic signal, although only in a mathematical sense. We can’t see any of the periods. They
are too far apart. And now since the signal is periodic, we can use the discrete-time Fourier
series (DTFS) to write its frequency representation in terms of its complex coefficients as

Ck = lim
N0→∞

1
N0

N0−1
∑

n=0

xN0
[n]e jkΩ0n. (5.2)
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CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM

Discrete-time Fourier Transform (DTFT)
In Chapter 4 we discussed the result of extending the period to infinity, which leads to

a continuous frequency response, even though the signal itself is discrete. We do the same
here for discrete signals.

In Chapter 3 we defined the fundamental digital frequency of a discrete periodic signal
as Ω0 = 2π/N0, with N0 as period of the signal in samples. As N0 goes to infinity, the
fundamental frequency goes to zeros as well. We can think of the fundamental frequency
as the resolution of the spectrum, so if this number is zero, then the frequency becomes
continuous and k, the harmonic identifier drops out entirely. Hence there are no unique
harmonics. Now the signal of Eq. (5.1) can be written as a periodic signal x[n].

Now we define a new transform called the Discrete-time Fourier Transform (DTFT)
for a discrete aperiodic signal, assuming that N0 =∞ as

DTFT X (Ω) =
∞
∑

n=−∞
x[n]e− jΩn (5.3)

Here x[n] is an aperiodic discrete-time signal. The expression does not contain any
reference to the harmonic index, k. Compare this to the CTFT as given by

CTFT X (ω) =

∫ ∞

−∞
x(t)e− jωt d t (5.4)

The CTFT frequency is termed ω whereas the digital frequency for discrete signals is
given by Ω. Notice the similarity between these two transforms. The CTFT, X (ω) is contin-
uous in frequency. The DTFT or X (Ω) is also continuous in frequency for the same reason:
due to the extension of the period to ∞. Both X (ω) and X (Ω) are continuous functions,
hence we have written them with round brackets.

The inverse DTFT is similarly given by this expression.

iDTFT x[n] =
1

2π

∫ π

−π
X (Ω)e jΩndΩ (5.5)

The forward transform or the DTFT is denoted by symbol X (Ω). However, you will find
other ways of denoting the DTFT. Oppenheimer book [?] refers to it as X (e jΩ), whereas both
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CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM

Miral book [?] and the Lathi [?] and Green’s [?] books refers to it by X (Ω). These notations
are basically convention, nothing to lose sleep over. In speaking, most all of these forms
are referred to simply as the “Fourier Transform” or even the more generic “spectrum”. And
even more egregiously, often just called FFT, which it may or may not be correct. Since most
signals we deal with in practice are discrete, the time qualifier can be dropped and we can
just call it the Fourier transform. However, in this book we will continue to refer to each type
by its full formal name, CTFT, DTFT, DFT etc.

DTFT is continuous and periodic with period of 2π

So first we say that the period of a signal is assumed to be infinitely long and now we
are saying that the DTFT is periodic. How can that be? Yes, in time domain, we are assuming
that the period is infinitely long. But in frequency domain the spectrum is periodic and X (Ω)
repeats with 2π. This talk of a frequency that is measured in multiples of π can be confusing.
But we must accept the fact that the DTFT is defined in terms of the digital frequency which
is special type of frequency. The signal consists of discrete values and in order to make the
analysis independent of real physical time, i.e. the time between the samples, the DTFT is
defined in terms of the digital frequency. This, if you trust us, also makes the math, easier
(ha!).

Unlike continuous frequency, the whole range of digital frequency is limited to 2π. The
spectrum computed thereof is also limited to that range and is called the principal alias as
we noted in Chapter 3. Because of this condition, the coefficients for harmonic frequencies
outside 0 to 2π are just copies. Hence there is no need to compute X (Ω) outside this range.
Anything beyond that just repeats the same values from the 2π range, or in fact from any such
range. We can ignore all these “replicated spectrum” as they are identical to the principal
alias. We write this property as

X (Ω) = X (Ω+ 2mπ) for all Ω ∈ [−π,π], m an integer (5.6)

This comes from the observation that

X (Ω+ 2mπ) =
∞
∑

n=−∞
x[n]e j(Ω+2πm)n

=
∞
∑

n=−∞
x[n]e jΩn e j2πmn

︸ ︷︷ ︸

=1

= X (Ω)
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CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM

Every 2π, X (Ω) is identical to the one before. This property simplifies the computation as we
need only integrate over a 2π range of the digital frequency. Since the area under a periodic
signal for one period does not change no matter where you start the integration, we can
generalize the DTFT equation over any range. We can for example write the equation for the
iDTFT in the second manner, with integration range written as just 2π, and both are valid.

x[n] =
1

2π

∫ π

−π
X (Ω)e jΩndΩ

=
1

2π

∫

2π

X (Ω)e jΩndΩ

Comparing DTFT with CTFT

( ) ( ), CTa x t

(d) DTFT

0 πππ-2 π2

( ) [ ], DTc x n

Discrete time, n

( )b CTFT
( )X ω

0 Frequency, ωCont. time, t

Frequency, Ω

Just one 

( )X Ω Repeating 

Figure 5.2: Comparing DTFT with CTFT (a) aperiodic CT signal, (b) its CTFT is continuous, (c) a
sampled discrete signal (d) is same as (b) but repeats with 2π.

Both CTFT and DTFT have a very similar construct. Let’s examine how DTFT differs
from the CTFT for an aperiodic signal. Assume that the CTFT of the signal shown in Fig.
5.2(a) is as shown in (b). We see a single spectral mass around the zero frequency with a
continuous frequency resolution. Now take the same signal in discrete form as in (c). This
has a DTFT that is continuous just as the CTFT, but this one repeats with 2π radians. This
is the same result we showed for discrete-time Fourier series. Both pairs of transforms, the
CTFSC - CTFT, the DTFSC - DTFT are similar. And this strange result is the mathematical
response to the frequency ambiguity of discrete signals. There are all served to use by the
DTFT for our consideration.

We will now show some examples of the DTFT. In these examples, we compute only the
principal alias which is the DTFT around the zero frequency, from −π to π. However, we
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CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM

must not lose sight of the fact that the DTFT spectrum copies go on forever on each side of
the principal alias, as we see conceptually in Fig. 5.2(d).

The CTFT properties shown in Chapter 4, Table 4.1 are also valid in conceptual sense
for discrete signals. These properties can be used to compute the DTFT for many signals.
We can, in most cases, take a CTFT equation, change the continuous frequency ω to digital
frequency notation Ω and then change continuous time t to discrete time notation n and get
a valid expression for the DTFT. However, what we get this way is only the principal alias
because CTFT does not repeat.

The DTFT is a bridge topic to get us to the Discrete Fourier transform (DFT), a widely
employed and a very useful algorithm. DFT is discrete in both time and frequency domain
and can be calculated easily by software such as Matlab. The Fast Fourier Transform (FFT)
was developed to make computation of the DFT quick and efficient. FFT is of course just an
algorithm for computing the DFT efficiently and not a unique type of Fourier transform on
its own.

The DTFTs for most signals other than a few simple ones you see in text books are hard
to compute, requiring one to pull out integral tables. Nor are they commonly used in real-life
engineering. So why bother with the DTFT if the subject is so theoretical? The main reason
is that until we understand the DTFT, we cannot fully appreciate the DFT. When we learn it
as a stand-alone topic, the DFT makes sense only in a procedural sense but one lacks deeper
understanding of where it is coming from. Since this book is all about deep understanding,
we ask you to read this chapter carefully.

Obtaining a DTFT from CTFT

DTFT can be obtained directly from a CTFT. Let’s compute the DTFT of a signal whose
CTFT we know. Take a signal that is a constant of magnitude 1. Its CTFT is an impulse of
magnitude 2π. (See Example 4.1). What if we have a constant of magnitude 1 in discrete-
time domain, what is its DTFT?

x(t) = 1↔ X (ω) = 2πδ(ω)

x[n] = 1↔ X (Ω) =?

This is a trivial case. By making the appropriate changes, we get

X (Ω) = 2πδ(Ω), for −π≤ Ω≤ π.
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CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM

We get the same impulse at the origin as for a CTFT, of magnitude 2π but, we then also get
its copies at all integer multiples of the 2π, the range of the digital frequency. The complete
DTFT repeats, so we extend the above expression to

X (Ω) = 2π
∞
∑

k=−∞
δ(Ω− 2πk) for all Ω.

For each k, we get an impulse at frequency Ω= 2πk, so this says that the spectrum of a
constant discrete signal is ever repeating impulses at integer multiples of 2π.

DTFT of a delayed impulse

The delayed impulse x[n] = δ[n − n0] is a very important signal. Nearly all discrete
signals can be represented as a summation of this general signal. We can compute the DTFT
by taking the CTFT of the delayed impulse and change the terms to their discrete equivalents
but, instead we will do the actual math using the DTFT equation. We compute the DTFT of
a delayed unit-impulse function, x[n] = δ[n− n0] using the DTFT Eq. (??).

X (Ω) =
∞
∑

n=−∞
δ[n− n0]e

− jΩn

The product of functions, δ[n−n0] and e jΩn is non-zero only at point n0, so we simplify
the RHS as

X (Ω) = e− jΩn0

Hence the DTFT of a discrete delayed delta function is a CE of frequency n0.

Therefore
x[n] = δ[n− n0]↔ X (Ω) = e− jΩn0 (5.7)

The magnitude and the phase of this transform is equal to

|X (Ω)|= |e− jΩn0 |= 1

∠X (Ω) = arctan
sin(Ωn0)
cos(Ωn0)

So no matter what the shift, the magnitude remains the same. The phase however will
change with the shift. This result is exactly the same as if we had applied the time-shift
property to a zero-shift delta function. If the shift is equal to 0, then we get

x[n] = δ[n− 0]↔ X (Ω) = e− jΩ(n0=0) = 1 (5.8)
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CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM

The transform of the un-shifted delta signal is of course 1 as we see in Figure ??(b) and
we can see that the DTFT of this signal is a purely continuous function of Ω. If n0 = 2, we
get

x[n] = δ[n− 2]↔ X (Ω) = e− j2Ω = cos(2Ω)− j sin(2Ω)

In figure 5.3, we see the effect of the delay on the transform of the delayed function,
with no change in magnitude but the phase change by 4π with 2π phase delay per sample
delay. We see a total of 4π phase travel over the range in (f).
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Figure 5.3: Comparing X (Ω) of an unshifted and shifted impulse.

DTFT of superposition of impulses

Example 5.1. We are going to examine the DTFT of a group of pulses, first 3 and then 5, all
centered at zero, as shown in Fig. 5.4. We can compute the DTFT by treating each impulse
as an independent signal and hence its DTFT is equal to a CE of a frequency equal to the its
delay term. We compute the DTFT of the 3 impulse function very simply as

x[n] = ...111000...

= δ[n+ 1] +δ[n] +δ[n− 1]

X (Ω) = e j1Ω + 1+ e− j1Ω
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Figure 5.4: DTFT of a group of pulses. (a) a 3-impulse signal and (b) a 5-impulse signal.

Similarly for the 5-impulse case, we can write it as

x[n] = ...111110...

= δ[n+ 2] +δ[n+ 1] +δ[n] +δ[n− 1] +δ[n− 2]

X (Ω) = e j2Ω + e j1Ω + 1+ e− j1Ω + e− j2Ω

Note that the DTFT of the 3-impulse signal can be analyzed easily. The center impulse
results in a DTFT of 1.0. The two adjacent impulses represent a cosine of frequency 1, hence
the DTFT should be the cosine wave with a DC offset of 1.0, which is what it is. We can think
out the DTFT of the 5 impulses as well. It is the sum of a DC offset of 1.0, plus a cosine of
frequency 1 and another one of frequency 2.

Example 5.2. Compute the DTFT of a discrete signal that combines several shifted impulse
functions.

x[n] = δ[n] + 2δ[n− 1] + 4δ[n− 2]
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We treat each one of these delta functions individually by applying the linearity princi-
pal.

X (Ω) =
∞
∑

n=−∞
δ[n]e− jΩn + 2

∞
∑

n=−∞
δ[n− 1]e− jΩn + 4

∞
∑

n=−∞
δ[n− 2]e− jΩn

= 1+ 2e− jΩ + 4e− j2Ω

= 1+ 2 cos(Ω)− j2 sin(Ω) + 4cos(2Ω)− j4sin(2Ω)

= 1+ 2 cos(Ω) + 4 cos(2Ω)
︸ ︷︷ ︸

real

− j (2 sin(Ω)− 4sin(2Ω))
︸ ︷︷ ︸

imaginary

Note that since the digital frequency Ω has units of radians, we do not have a time
variable to go along with it. We note that the DTFT is continuous and repeats with 2π. The
spectrum shown covers 3 periods, the rest are all there, outside the boundaries of the plot.
We don’t show them but they are indeed there, all looking like the principal alias in (b).
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Figure 5.5: DTFT of (a) the discrete aperiodic signal, (b) Principal alias, (c) the real repeating DTFT
over three 2π sections (d) the phase.
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DTFT of a square pulse
Square waves are very useful as a model of real signals. We have been examining them

in each chapter. What you learn from these signals, you can then generalize to nearly all
shapes. Let’s start with a square pulse of width N discrete samples. However, note that
signal period is not N , it is longer and in fact is it not infinitely long? Hence the parameter N
has nothing to do with the length/period of the signal. It is just the width of the pulse itself.
Note that in this example, the square pulse is centered at 0. We assume that N is odd. We
define this function as

x[n] =

(

1 −M < n≤ M , where M = (N − 1)/2

elsewhere

We compute the DTFT as

X (Ω) =
∞
∑

n=−∞
x[n]e− jΩn

=
M
∑

n=−M

1 · e− jΩn

=
sin
�

2M+1
2 Ω

�

sin
�

1
2Ω
�

(5.9)

The result in the last row is the Dirichlet Function. We can also write the result as follows

X (Ω) = Diric(N ,Ω) (5.10)

We plot the DTFT using Eq. (5.10) for various values of N , which is the width of the square
pulse in samples. The absolute value of the Dirichlet function is plotted vs. the true value
in the RHS of Fig. 5.6. The length of the signal is 12 samples for each case. Can you say
what would happen to the DTFT (on the RHS), if we increase the length of the signal from
12 samples to 100 samples. Actually nothing would change, we would get exactly the same
result. DTFT is not a function of the number of samples beyond the pulse. The DTFT as we
can see in Eq. (5.10) is a function of only the number of samples of the square pulse or N .
That’s because the formulation of the DTFT already assumes that zeros on the sides go on
forever.

Note that the result we got for Example 1 which are of course square pulses, is identical
to the one computed using the diric function in Fig. The only difference is that one is plotting
the absolute values so lobes appear flipped up.

149



CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM

−5 0 5
0

1

0

2

4

6

−3 −2 − 0 2 3−5 0 5
0

1

0

2

4

6

−5 0 5
0

1

0

2

4

6

π π π π π π

−3 −2 − 0 2 3π π π π π π

−3 −2 − 0 2 3π π π π π π

(a)

(c)

(e)

(b)

(d)

(f)

n

n

n

A square pulse, N = 3

A square pulse, N = 5

A square pulse, N = 7

3 Lobes

5 Lobes

7 Lobes

( )X Ω

( )X Ω

( )X Ω

A
m

p
li

tu
d

e
A

m
p
li

tu
d

e
A

m
p
li

tu
d

e

Sample, n Digital Frequency, Ω

Figure 5.6: A pulse of length N = 3, 5, 7 samples and its spectrum.

Dirichlet detour

The Dirichlet function is often called the periodic version of the sinc function. These two
are phenomenally important functions in signal processing.

sinc(ω) =
sin(ω)
ω

Diric(Ω) =
sin NΩ

2

N sin Ω2

Notice the presence of N in the diric function. Diric is a periodic function and hence N
represents the period. There is no such parameter in sinc since it is not a periodic function.
So the two functions are not the same or even equivalent but are often presumed to be so.
We plot both of these functions in Fig. 5.7 to see the relationship. The sinc function in the
top row is continuous and aperiodic. In Matlab, we use the normalized version of the sinc
function such that the x-axis is given in terms of x . Only when x is an integer is the function
zero. So in a discrete sampling, the sinc function is equivalent to a single impulse.

The Dirichlet in the second row has the parameter N, the width of the square pulse in
samples. It is periodic with 2π for N = odd, and 4π when N is even. (We don’t see this in
Fig. 5.7, because the plot contains absolute values so all the lobes are on the positive side.)
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Figure 5.7: Sinc and the Dirichlet function

Let’s examine the Dirichlet function in a bit more detail. Fig. 5.8 shows the behavior
of the the Diric function (the Matlab version of the Dirichlet). We see that the number of
zero crossings in the range of 2π are equal to N − 1. For N = 5, we see 4 zero crossings, for
N = 9, we see 8 zero crossing. The function is non-zero only at 0, exactly the same as a sinc
function in the 2π range. On RHS, we see the same function over a longer range of digital
frequencies plotted along the sampled-discrete version.

Where the sinc function looks like a single impulse when sampled at integer argu-
ments, the sampled Dirichlet looks like an impulse train, with impulses present every 2π.
The Diric function crosses zeros at all frequencies equal to (2πm)/N where N is the or-
der of the diric function as in Matlab diric(f, N). Hence for N = 5, the zeros occur at
Ω= ±2π/5, ±4π/5, ±6π/5, ±8π/5, . . ., for N = 6, the zeros occur at Ω= ±2π/6, ±4π/6,
±6π/6, ±8π/6, . . . etc. The parameter N determines the number of lobes before the function
starts repeating again.

Applying time-shift property to the DTFT of a square pulse

What is the DTFT of a square pulse, when not centered at 0? We can think of this as a
square pulse located at zero frequency but with a time-shift. Knowing the time-shift property
is a very handy thing. The analysis is same as in un-shifted case, except we are going to add
a time shift. We assume that the pulses are centered at L samples from the origin. The time-
shift is L units. The DTFT can now be written from the time shift property as simply the
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course a sinusoid because the signal for N = 2 is just two impulses.

DTFT times the CE of frequency per Eq. (5.7) e− jΩL as follows

X (Ω) = e− jΩLX (Ω)undelayed

= e− jΩL
sin
�

2N+1
2 Ω

�

sin
�

1
2Ω
�

(5.11)

In Fig. 5.9, we plot the DTFT for two pulse widths, N = 3, with a time shift of L = 10
samples. On the LHS, we see the un-shifted square pulse, on the RHS, the shifted version.
We see from Eq. (5.11) that the magnitude of the DTFT did not change, the shift results in
no change in the magnitude of the DTFT, only the phase.
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Figure 5.9: Time shift property for N = 3.
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Time expansion property
Example 5.3. Let’s take this signal which looks like it has zeros inserted in between the
samples of a 3 sample square pulse, x = [10 01 00 1 ]. We can write this discrete signal as

x[n] = δ[n] +δ[n− 3] +δ[n− 6]

There are many different ways of computing the DTFT of such a signal. We can do it such
as we did with the individual components in Example (). Here we apply the time-expansion
property to show a more efficient method. The pulse of N = 3 has been expanded by a factor
of 3 by inserting these zeros. We write the time-expansion property as

x(at)
F
←→

1
|a|

X
�

Ω

a

�

(5.12)

We see that adding zeros between the samples expands the signal but compresses the
DTFT. In Fig. 5.10, we see this effect as more zeros are added. Why exactly does that happen?
Examine the case of the 3-impulse square pulse. As we increase the spacing between, the
outer two pulses by the addition of zeros, we are increasing the frequency of the real signal
represented by these two outer impulses. What happens if N goes to infinity? Then only the
center delta function is left, and the DTFT will turn into a flat line, as we can guess from the
compression being seen in Fig. 5.8.

DTFT of a triangular pulse
Example 5.4. A triangular pulse is nearly as important in signal processing as the square
pulse. It is the convolution of two rectangular pulses, something which comes up often. We
write the triangular pulse as

x[n] = 1−
|n|
N

, |n|< N

The pulse is 2N samples wide and symmetrical. The DTFT is computed as

X (Ω) =
∞
∑

n=−∞
x[n]e jΩn

= 1+
N−1
∑

n=1

�

1−
n
N

�

�

e jΩn + e− jΩn
�

= 1+ 2
N−1
∑

n=1

�

1−
n
N

�

cos(nΩ)

=
sin2

�

N
2Ω
�

N sin2
�

1
2Ω
�

(5.13)
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Figure 5.10: Time expansion property. As the impulses are spreading out, their effect is lessening and
hence what remains is just the center pulse in a limiting case. We see the response compressing and

approaching a single continuous line with increasing a, the spreading factor.

The result is a function that is the Dirichlet function squared.

We could have computed the DTFT of a triangular function by applying the convolution
property. We recognize, that a triangle pulse is the result of a convolution of two identical
rectangles. So we write the pulse as a convolution.

x[n] = rect
�

n
N

�

∗ rect
�

n
N

�

(5.14)

The DTFT of this convolution is the product of the DTFT of the individual square pulses.
From that we get

X (Ω) =





sin
�

2N+1
2 Ω

�

sin
�

1
2Ω
�





2

(5.15)

So knowing the properties can make the task of computing FTs easier in many cases.

Computing the DTFT of a Raised-cosine pulse
The sinc pulses are great and it would be wonderful if we could actually build them

but they require an infinite length and can only be approximated. The alternate options are
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Figure 5.11: A triangular shape pulse has a squared Diric signal response.

raised-cosine pulses which also limit the bandwidth of the baseband signal and are easily
built in hardware.

p[n] =
cos

�

πα
n/Fs

Ts

�

1− 2α
n/Fs

Ts

×
sin
�

π
n/Fs

Ts

�

π
n/Fs

Ts

(5.16)

Here Fs is the sampling frequency, α is a real number less than one and is called the roll-
off factor, Ts is the inverse of symbol rate Rs. The first part is called the raised-cosine and the
second part which is the sinc function is called the cascaded sinc applied to the raised-cosine
pulse. If α = 0, we get an ideal rectangular shape, and if α = 1, we get a pure raised-cosine
shape. These parameters set the baseband bandwidth of the signal as

BW= Rs(1+α) (5.17)

To compute the DTFT of this pulse we will have to resort to some heavy-duty math. But
no need, as it has already been done for us by better minds. Here is the equation that gives
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us the CTFT of the above good looking pulse.

P( f ) =



























Ts 0≤ | f | ≤
1−α
2Ts

Ts

2

�

1+ cos
�

πTs

α

�

| f | −
1−α
2Ts

��

�

1−α
2Ts

≤ | f | ≤
1+α
2Ts

0 | f | ≥
1+α
2Ts

(5.18)

We plot the time-domain signal and its DTFT in Fig. 5.11. It looks very similar to a
sinc function. Although this pulse too goes on forever, for practical design, it is clipped to a
certain length, referred to by taps.
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Figure 5.12: (a) Time domain root-raised cosine pulse shape (b) The spectrum of the raised cosine pulse
for α= 0.5,0.33, 0.25,0.15. Note that frequency domain looks like a low pass filter, with a roll-off.

DTFT of a Gaussian pulse
The discrete-time version of the Gaussian signal is given by

x[n] =
1

σ
p

2π
e−n2/2σ2

(5.19)

To compute the DTFT of this signal, being good engineers we are going to again skip the
math. It is a fairly simple calculation, but others have already done it for us. The DTFT
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of this Gaussian shaped pulse, is also Gaussian in shape. You recognize why that happens;
because the pulse is an exponential and the integral of such a function is also an exponential.
The result is beautiful and elegant and a very useful thing to know. Many random signals
are Gaussian in nature.

X (Ω) = e−Ω
2/2σ2

(5.20)
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Figure 5.13: DTFT of a Gaussian pulse for σ = 2. Note that there is no obvious cutoff.

Note that we would have to sample the Gaussian function by at least 4 times the max-
imum frequency in order to avoid significant aliasing. The reason is that this function has
no obvious maximum frequency and no matter what we choose, the signal will still contain
frequencies higher than that number albeit in low amplitudes. The alternate is to pass the
signal first through a low pass filter which removes all higher frequencies.

Now the DTFT of periodic signals

DTFT is a mathematical concept and requires integration, hence is not a practical algo-
rithm for anything more complicated than simple functions. Continuous and infinitely long
functions are manageable in textbooks but impractical in real life. So a continuous frequency
spectrum is not a desired result. What we want is a discrete spectrum, which is far more
practical. As engineers working with numbers, we want a spectrum that is discrete and one
which we can compute in a discrete manner using computers. However, DTFT does not give
us that.

All of the signals we looked at so far in this chapter were aperiodic, pulses standing
alone. But what about discrete signals that are periodic? We have a transform for these as
well and this is a yet one more type of Fourier transform. The DTFT of periodic signals is the
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most important type of Fourier Transform. Not because periodic signals are so important but
because, the DTFT of periodic signals is discrete. This is our desired goal. We want a discrete
spectrum! The DTFT of periodic signals, when modified for finite-length signals, gives the
Discrete Fourier Transform (DFT), the most used form and for which the well-known Fast
Fourier Transform algorithm was written. It took us a lot of pages in this book and 100’s of
years of history to get to this important point.

But what if our signal is not periodic, then what? Never fear, we will just go ahead and
pretend that it is periodic, with signal length equal to the period.

However, we are not quite there yet. Let’s take a periodic, discrete-time signal with a
period of N0 samples and write its discrete Fourier series equation. Note we did not talk
about a period when discussing DTFT of aperiodic signals, but we will now. Period now
becomes relevant because these signals are periodic, so they have a period! And whenever,
we have a period, the frequency resolution must be discrete. However to derive a transform
for periodic discrete signals, we have to go back to discrete-time Fourier series as our starting
point, same as we did for the continuous-time CTFT for periodic signals in Chapter 4.

The Fourier series is written in form of Fourier series coefficients for discrete-time signals
as follows. (See chapter 3)

x[n] =
1
N0

N0−1
∑

k=0

Cke j 2π
N0

kn (5.21)

Where Ω0 = 2π/N0 is the digital frequency of the discrete signal and N0 is the period of the
signal in samples. The coefficients of the harmonics are given by

Ck =
N0−1
∑

n=0

x[n]e− j 2π
N0

kn (5.22)

Since now we have N0 samples of a periodic signal, we can indeed compute these coef-
ficients. Let’s take the DTFT of Eq. (5.21).

X (Ω) = F

§

1
N0

N0−1
∑

k=0

Cke j 2π
N0

kn
ª

= Ck F

§

1
N0

N0−1
∑

k=0

e j 2π
N0

kn
ª

(5.23)

[Check this equation].
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The coefficients in Eq. (5.23) are not a function of frequency, so they are pulled out in
front. The DTFT of the underlined part, a summation of complex exponentials is a train of
impulses.

F

§ N0−1
∑

k=0

CK e jΩ0kn
ª

= 2πCk

∞
∑

m=−∞
δ(Ω− kΩ0 − 2πm)

Substituting this expression into Eq.(5.23), we get the equation for the DTFT of a peri-
odic signal.

X (Ω) = 2πCk

∞
∑

k=−∞
δ

�

Ω−
2πk
N0

�

(5.24)

This equation says that the DTFT of a periodic discrete signal repeats the DTFS coeffi-
cients, Ck at every integer multiple of the digital frequency. That’s what the second part, the
impulse train is saying. This formulation is quite different from the DTFT of an aperiodic
signal which we computed by Eq. (??). The situation here is analogous to the case of the
CTFT of periodic signals. The CTFT of a periodic signal is a discrete version of the CTFSC.
Similarly the DTFT of a periodic signal is also a discrete version of the DTFSC. The only dif-
ference, and a very big one, is that the coefficients of the DTFT are periodic. This of course
has to do with the frequency ambiguity of discrete signals.
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Figure 5.14: Four versions of the Fourier transform.

The DTFT of periodic discrete-time signals in Eq. (5.24) tells us that the DTFT of a
periodic signal consists of its DTFS coefficients repeated every N0 samples. Since N0 is a
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finite number, the samples are discrete and no longer continuous as they are for an aperiodic
case. The spectrum is now discrete. Just what we like! Now we are getting somewhere.

Repeating this important fact again: The DTFT of both the aperiodic and the periodic
signal repeats but is discrete only for the periodic signals..

In Fig. 5.15 we see the comparison of the CTFT and DTFT of a periodic signal. The CTFT
of a continuous-time periodic signal is discrete but non-repeating. The DTFT of a discrete
signal is discrete, however, it repeats with the sampling frequency Fs samps or N0 in samples.
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Figure 5.15: Comparing CTFT and DTFT for periodic signals.

Since the DTFT of a periodic signal is repeating the DTFS coefficients, here we give a
table of the DTFS coefficients for some important signals. Knowledge of these makes com-
puting the DTFT of periodic signals easier.

Now we look at a basic discrete-time signal that is periodic. As we shall see, the DTFT
instead of being continuous is discrete.

DTFT of periodic signals
Example 5.5. We want to compute the DTFT of this periodic signal of period N = 4, x[n] =
[0, 1,2, 1,0, 1,2, 1, ...].

In Fig. 5.16(a), we see the signal and its DTFT. For N = 4, we find that impulses occur
in the frequency domain every π/4 radians. We have the same situation as for the CTFT.
These coefficients are also a factor of 2π larger than the DTFSC.
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Table 5.1: DTFS and DTFT of common function

Time Domain Signal DTFS DTFT

x[n] Ck =
1
N0

N0/2
∑

n=−N0/2

x[n]e− jΩ0n X (Ω) =
1
N0

∞
∑

n=−∞
x[n]e− jΩ0n

1 1 2π
∞
∑

k=−∞
Ckδ

�

Ω−
2πk
N0

�

δ[n]
does not exist 1

impulse at 0

δ[n− n0] does not exist e− jΩn0

shifted impulse

∞
∑

m=−∞
δ[n−mN0] 1

N0

2π
N0

∞
∑

k=−∞
δ

�

Ω−
2πk
N0

�

Impulse Train, period N0

e jnΩ0















1 k = mN0

0 elsewhere

2π
∞
∑

k=−∞
δ(Ω−Ω0 − 2πk)Periodic complex exponential

with Ω0 =
2π
N0

Cosine, periodic















1/2 k = mN0

0 elsewhere

π

∞
∑

k=−∞
δ(Ω+Ω0 − 2πk)

+π
∞
∑

k=−∞
δ(Ω−Ω0 − 2πk)

Sine, periodic















j1/2 k = mN0

0 elsewhere

jπ
∞
∑

k=−∞
δ(Ω+Ω0 − 2πk)

− jπ
∞
∑

k=−∞
δ(Ω−Ω0 − 2πk)
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Figure 5.16: The DTFT of a periodic signal. Instead N = 4, we have plotted the spectrum for N = 20.

To compute the DTFT we note that the fundamental period is equal to 4. The DTFT of
this signal is given by Eq. (5.24) by

X (Ω) = 2π
∞
∑

k=−∞
Ckδ

�

Ω−
2πk

4

�

We can compute the coefficients by

Ck =
1
N0

∑

N0

x[n]e− jkΩ0n

The DTFT of periodic signals gives a spectrum that is discrete. But what does periodic
mean in this context? It basically means that we take the data for one period and perform
the analysis only on that. The length of the period results in sampling of the continuous
spectrum that we calculated for the DTFT of an aperiodic signals. So in fact we can take any
piece of a signal, pretend that it is a one complete period, and then go ahead and do the DTFT
on this finite length. Such a process gives a discrete spectrum. This is the basis of the next
topic, the Discrete Fourier transform (DFT). The DFT is same as the DTFT of periodic signals,
except that we use all the data available and call it one period of a presumed periodic signal.
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Summary of Chapter 5

In this chapter we examined the Fourier transform for discrete signals, or the DTFT.
The DTFT spectrum of aperiodic signals is a continuous function of frequency hence it is not
considered a practical tool. It is mostly of theoretical and educational interest and is a bridge
topic to DFT. The DTFT of periodic signals however is a sampled version of the continuous
DTFT. From the DTFT, we drive the DTFT of finite length signals, called the DFT, in the next
chapter.

Terms introduced in this chapter:

• DTFT - Discrete-time Fourier transform
• DFT - Discrete Fourier transform
• Dirichlet function - The periodic version of the sinc function.

1. The DTFT of a discrete-time aperiodic signal is developed by assuming that the period
of the discrete pulse is infinitely long, the same idea applied to continuous-time signals
to develop the CTFT.

2. Because the period is presumed very long, the frequency resolution approaches zero,
hence the DTFT, specified by X (Ω), becomes a continuous function of frequency.

3. The DTFT of an aperiodic signal is continuous just as the CTFT. However, unlike the
CTFT, the DTFT repeats for each range of 2π.

4. The DTFT of an aperiodic signal as a function of the digital frequency Ω is unique only
in 2π range.

5. We need to compute the DTFT only in this range, as the DTFT in all other frequency
ranges are identical to the principal alias.

6. The DTFT is given by

X (Ω) =
∞
∑

n=−∞
x[n]e− jΩn

The frequency Ω is continuous.
7. The iDTFT is given by

x[n] =
1

2π

∫

2π

X (Ω0)e
jΩndΩ

8. The DTFT of an aperiodic discrete signal is continuous and repeating.
9. The DTFT of a periodic discrete signal is given by

X (Ω) = 2π
∞
∑

k=−∞
Ckδ

�

Ω−
2πk
N0

�

.
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10. The DTFT of a periodic signals is the discrete-time Fourier series coefficients, Ck scaled
by 2π and repeating with the sampling frequency of the signal.

11. The period of a discrete signal is given by N0 or by Fs.
12. The DTFT of a discrete periodic signal is similar to discrete-time Fourier series, DTFSC.
13. The DTFT of periodic signals is a sampled version of the discrete-time Fourier series

coefficients. Hence it is discrete and repeats with the sampling frequency.
14. The DTFT of a discrete periodic signal is discrete, with frequency resolution of 2π/N0

with N0 equal to the samples per period.
15. DTFT of periodic signals leads us to the Discrete Fourier Transform (DFT) which can

be used for finite length signals.

Questions
1. The CTFT of an aperiodic CT signal is different from the DTFT of the same signal

sampled with a sampling frequency, Fs in what important manner?
2. The DTFT is periodic with what digital frequency?
3. What is the principal difference between the CTFT and the DTFT?
4. If a signal is sampled with frequency Fs, what is the frequency range of the principal

alias?
5. At what sampling frequency will a sinc function appear as a single delta function?
6. A discrete signal has a period of 12 samples. What is its digital frequency?
7. Why does the DTFT repeat?
8. What is the fundamental digital frequency of this periodic sequence. x[n] = [ 1 0 1 0

0 2]
9. Given the fundamental period, what is the digital frequency of a signal?

10. For a discrete signal with a period of 1001 samples, how many unique basis signals can
be used in determining its DTFT.

11. Why do we use digital frequency for discrete signals?
12. What is the DTFT of x[n] = 1, X (Ω) =?
13. What is the DTFT of x[n] = δ[n− 4]?
14. What is the DTFT of the sequence x(t) = [ 1 0 1 ]?
15. Which formulation best specifies the amplitude spectrum of a signal, x(t). X ( f ); |X ( f )|e jφ;
|X ( f )|.

16. State the time scaling property of a signal. A signal is speeded by a factor of 4 in time,
what happens to its DTFT?

17. By the sifting property of the delta function, what is the result of this expression;
e(−2ωt)δ(t − 3)?

18. What is the fundamental period of the following signal? x(t) sin2(3ωt)− .5 cos(5ωt)
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19. The sampling time is related to the fundamental period by what relationship?
20. A signal has bandwidth of 500 Hz. What is the highest and the lowest sampling fre-

quency that we can use?
21. What is the shape of the FT of a Gaussian pulse.
22. A square pulse lasts 1 second. What is it DTFT?
23. If a signal is of bandwidth 100 Hz, and the sampling time is .005 seconds, what is its

Nyquist rate.
24. If a signal is being sampled at sampling frequency of 100 Hz, what is its fundamental

period.
25. What is the CTFT of a sinusoid of frequency 4 Hz.
26. How does the CTFT of a sine wave differ from the CTFT of a cosine wave.
27. Can you spot the errors in this expression for the iDTFT. x[n] = 1

N

∫

π
X (Ω)e jΩ0kdΩ

28. If a function is shifted in frequency domain by 3 radians, what happens to the signal
in time domain?

29. If a function is shifted in frequency domain by 2 Hz, by what would its iDTFT be
multiplied, per the shift property?

30. What is the main difference between the Diric and the Sinc function?
31. The CTFT of a periodic signal is different from the CTFSC in what way?
32. The DTFT of a periodic signal is different from the DTFSC in what way?

165



CHAPTER 5. DISCRETE-TIME FOURIER TRANSFORM

Table 5.2: DTFT of common signals

Signal x[n] DTFT X (Ω)

1, −∞< n<∞ X (Ω) = 2π
∞
∑

n=−∞
δ(Ω− 2πk)

sgn[n] =















−1 0> n

1 0≤ n

1
1− e− jΩ

u[n]
1

1− e− jΩ
+ 2π

∞
∑

n=−∞
δ(Ω− 2πk)

δ[n] 1, −∞< Ω<∞

δ[n− n0] e− jΩn0

aδ[n− n1] + bδ[n− n2] ae− jΩn1 + be− jΩn2

anu[n], |a|< 1
1

1− ae− jΩ

e jΩ0n, Ω0 real X (Ω) = 2π
∞
∑

n=−∞
δ(Ω−Ω0 − 2πk)

Square pulse of width τ sin(τΩ/2)
sin(Ω/2)

centered at n= 0

Square pulse of width τ sin(τΩ/2)
sin(Ω/2)

e− jΩn0

centered at n= n0

cos(Ω0n) π

∞
∑

n=−∞

�

δ(Ω−Ω0 − 2πk) +δ(Ω+Ω0 − 2πk)
�

cos(Ω0n+φ) π

∞
∑

n=−∞

�

e jφδ(Ω−Ω0 − 2πk) + e− jφδ(Ω+Ω0 − 2πk)
�

sin(Ω0n) − jπ
∞
∑

n=−∞

�

δ(Ω−Ω0 − 2πk)−δ(Ω+Ω0 − 2πk)
�

sin(Ω0n+φ) − jπ
∞
∑

n=−∞
[e jφδ(Ω−Ω0 − 2πk)− e− jφδ(Ω+Ω0 − 2πk)

�
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