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This book will deepen your understanding of Fourier analysis making it easier to
advance to more complex topics in digital signal processing and data analysis in
mathematics, physics, astronomy, bio-sciences, and financial engineering. With
numerous examples, detailed explanations, and plots, we make the difficult concepts
clear and easy to grasp.

Fourier transform developed slowly, from the Fourier series 200 years ago to Fourier
transform as implemented by the FFT today. We tell you this story, in words and
equations and help you understand how each step came about.

• We start with the development of Fourier series using harmonic sinusoids to
represent periodic signals in continuous and discrete-time domains.

• From here, we examine the complex exponential to represent the Fourier series
basis functions.

• Next, we describe the development of the continuous-time and discrete-time
Fourier transforms (CTFT, DTFT) for non-periodic signals.

• We show how the DTFT is modified to develop the Discrete Fourier Transform
(DFT), the most practical type of the Fourier transform.

• We look at the properties and limitations of the DFT and its algorithmic cousin,
the FFT. We examine the use of Windows to reduce leakage effects due to
truncation.

• We examine the application of the DFT/FFT to random signals and the role of
auto-correlation function in the development of the power spectrum.

• Lastly, we discuss methods of spectral power estimation. We focus on
non-parametric power estimation of stationary random signals using the
Periodogram and the Autopower.

If you would like to get updates and notices of error corrections to this book, please
email me at charldsp@gmail.com.
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Foreward

Spectrum analysis is the single most important topic in the field of digital signal pro-
cessing (DSP) and in many other fields. And spectrum analysis is performed by imple-
menting the various forms of the Fourier transform. Thus a solid knowledge of Fourier
transforms is mandatory for practitioners of DSP and any field requiring spectral analysis.
That’s because, for all but the most simplistic signals, the best way to understand the
true nature of a real-world signal is by examining its spectrum. With this notion in mind,
I believe no amount of time spent studying the Fourier transform is a waste of time.

Having said that, the question is: "What’s the best way for you to learn Fourier transforms
as they are related to DSP?" Years ago learning Fourier transforms was a daunting task.
Your only choice was to plow through academic books written by university professors,
and those books often relied on page after page of mathematical equations to enlighten
their readers. (For example, I have a spectrum analysis book on my bookshelf that has
a grand total of two figures in its first 165 pages!) Back then, unfortunately, many
readers suffered a kind of Death by Algebra because engineering textbooks too rich in
mathematics are hard to digest.

Times have changed. Today we have available to us signal processing books that are
much more palatable and easier to read, while still being technically informative. With
its careful and gentle plain-language text and beautiful illustrations, you’re holding such
a book in your hands right now! Let’s be clear now. This book does contain all the
mathematics you need to learn the Fourier transform, but the important distinction is
that the equations are explained in terms that you will understand.

I first met Charan years ago in Silicon Valley when she was an working at Loral Space
Systems. It was enjoyable meeting a lively smart lady who was also interested in signal
processing. After a few years I realized she wasn’t just interested, but rather she was
captivated by DSP. It was no surprise when she began a part-time career instructing,
writing about, and spreading the gospel of DSP through her website.

ix



It’s with pleasure that I recommend this book to beginners in the field of DSP. It’s clear
that its authors are dedicated specialists of whom the English poet Chaucer would say,
"Gladly would they learn and gladly teach." I wish this book had been available decades
ago when I first struggled to learn the Fourier transform.

Richard G. Lyons
Besser Associates
Mt. View, California
Author of: “Understanding Digital Signal Processing”
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Preface

The Fourier transform shows up in so many different fields, that there isn’t an another
concept that spans across so many disciplines. Even the famous Heisenberg uncertainty
principle is just a restating of the Fourier transform. There is no other mathematical
concept that gives one as much bang for the buck as does the Fourier analysis. If you
have a strong grasp of this concept, it can help you solve problems in interference,
communications, probability theory, cryptography, acoustics, optics, control systems,
and the list goes on. Like e and the golden ratio, it is one of those concepts, which defies
boundaries and show up everywhere.

In college, not enough time is devoted to this subject. All electrical engineering students
either take a Transform theory class or are exposed to it in bits and pieces in a DSP
course. In DSP classes, the application of Fourier transform is thrown in with other
material such as linear systems analysis. However, DSP only makes sense when you
understand Fourier analysis well. All fundamental concepts of DSP are based on Fourier
analysis. In mathematics and physics, this subject is covered only cursorily and left
as an optional class in other sciences. In other fields such as biology, astronomy and
geo-sciences, practitioners often lack an understanding of the basis of spectral estimation.

This book is intended to give both students and practicing engineers a deeper under-
standing of Fourier analysis, as a stand-alone topic from its emergence as Fourier series,
its application to both analog and discrete signals and finally to spectral estimation
using the Fourier transform. While this subject is at the pinnacle of human achievement,
engineering education, due to the limited time available, often fails to impart its beauty
and scope to students. It often takes years to appreciate this and happens mostly on the
job when you have to apply these concepts to something “real.”

Our main goal in this book is to help you fully understand what is happening when you
compute an FFT of a discrete signal. It is intended to deepen your understanding of the
transform theory on which much of numerical analysis is built. There is a whole long
story behind this apparently easy-to-compute but hard-to-understand concept. We start
the story with the Fourier series in its original trigonometric form as imagined by Baron
Fourier, and then progress through all its developments with contributions from other
notables along the way to the end point, the spectral estimation of random signals using
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the discrete Fourier transform. In the last two chapters of this book, we cover application
of the Fourier analysis to the non-parametric spectral analysis of random signals.

The Fourier transform, a special case of the Laplace transform, is a fundamental tool
for the analysis of stationary signals. In this book, we only cover Fourier analysis and
although it leads to all sorts of other important transforms, we feel it is best not to
confuse the issue by introducing other transforms. They all deserve a book of their
own.

One of the hardest parts of writing this book was deciding where to start. To explain
any concept in signal processing requires a good understanding of what comes before
it. And of course, to build that understanding means you have to be comfortable with
the fundamentals of that concept. To understand the ins and outs of modern-day digital
spectral estimation, we start with the basics of sine waves. It is like starting a history
lesson about WWII at the Middle ages! But this background is needed to really get into
the topic.

Another difficult part is deciding how to describe these concepts. Do we go with the
mantra that an equation speaks a thousand words or should a thousand words accompany
the equation? Should we repeat ourselves? Take for example, the following sentence
which is completely true about the discrete time Fourier transform (DTFT):

“The DTFT is a transformation that maps a discrete-time signal onto a continuous func-
tion of ω that spans from 0 to 2π. Alias spectrum appear outside this range.”

It is completely true and yet, transfers no quick, shiny nugget of knowledge. Translated
into English, it may read as:

“The DTFT is a mathematical machine that takes an input signal as a function of time
and produces an output signal as a function of frequency. The input signal is discrete,
meaning it only has amplitude values (called samples) at equally spaced time intervals.
The output signal is a function of frequency ω and is continuous, and has a value,
although it might be zero, at all frequencies. The output signal is called the spectrum.
This output signal ranges from 0 to∞ radians, but because the spectrum repeats outside
of 0 to 2π, we only need consider this one section. The repetition occurs because if there
is a sine wave of frequency ωx that fits some given samples, then other sine waves of
frequencies (ωx + 2πk) will also fit the same samples.”

That is a lot work to write out, and even this is not sufficient to convey full understanding.
However, that is what is needed to develop an intuitive understanding. Unfortunately
short dense sentences and pages of equations is what students get in the textbooks.
Most of the focus in school is also on solving hard, tricky problems or remembering
transform pairs. This part of learning is important, but without developing an intuitive
understanding, the work is only half-done.
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Fourier analysis and transform is a wonderfully simple but deceptively deep subject. We
want this book to be a supplement for your education so that you will come to appreciate
its beauty and depth. We explain what is going on behind the equations. We try to make
these complex ideas come alive with the use of plots. A picture may be worth a thousand
words, but we have decided to also give you the thousand words. Hence, you may say
we examine the signals in a brand new domain, called the Word Domain in which we
explore our signals in plain language. True understanding and an intuitive feel comes
only when you can describe a mathematical concept in words.

Our goal is to help you master Fourier analysis from its beginning with the Fourier
series, through CTFT and DTFT, all the way to the discrete Fourier transform (DFT),
and spectral estimation, in a painless manner.

The first five chapters set the stage for the DFT. We start with the easy to understand
trigonometric form of the Fourier series in Chapter 1, and then its more complex form
in Chapter 2. From there, we go to discrete time signals in Chapter 3 which introduce
new complexity to the topic. The development of the Fourier transform from the Fourier
series, specifically the continuous time Fourier transform (CTFT) is discussed next. We
combine the last two chapters to get to the discrete-time Fourier transform (DTFT)
in Chapter 5. From here, it is a manageable leap to the DFT, our main quarry in
Chapter 6. From there we spend the last three chapters on how the Fourier transform
is used in “real life”. Chapter 7 explains how windows can improve the spectrum by
mitigating leakage, an inevitable consequence of DFT. Chapters 8 and 9 explain spectral
estimation of stationary signals, specifically the non-parametric spectral estimation of
random signals.

Altogether this book should help fill in the details and big concepts in Fourier analysis
and, importantly, show you how to use them with comfort and ease. At the end of
each chapter, we include some questions to test your conceptual understanding. These
questions do not require a lot of calculation, and should be answered verbally as much
as possible.

We want to thank some important people who offered comments, and encouragement.
At Loral, we would like to thank Tom Watson and John Walker for helpful technical
discussions and advice in many fields over the years. I would like to thank Rick Lyons,
the author of my favorite DSP book, who read much of the material and helped me
think through a few hard topics. His book, "Understanding Digital Signal Processing"
is my model of how all engineering books should be written. I credit him for being my
inspiration. Rena Tishman, my good friend and a lapsed engineer, read, edited, and
corrected the chapters over several iterations of the book. I can’t thank her enough for
her life-long friendship and support. Ryan Bahneman, Stephen Paine and Paul Johnson
read the chapters and provided valuable comments. I am also grateful to Dr. Jerry
Gibson at UCSB and Dr. Yannis Tsividis at Columbia University for providing valuable
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comments. We are also grateful for the detailed(microscopic!) review of the book by
Björn Neubauer of the Brunssweig University. Björn caught some subtle errors in indices
in Chapter 2 as well as some big ones in the calculations. An unexpected source of
help came from Patricio Parada. Patricio not only designed the book in Latex, being an
engineer himself, also corrected errors. We are very grateful for his help. For editing,
we would like to thank Grima Sharma, who added linguistic polish to the book. Nina
Levin, the publisher and our taskmaster, made sure we got the book done in this century.

We also want to thank The Mathworks, Inc. for their support with MATLAB. The MATLAB
code for many of the plots in this book as well as other related materials will be available
at the book site.

This is the first edition of this book. Errors are bound to be there! May we ask your
consideration in dropping us an email if you find any errors in this version. Thank you.

Charan Langton
Victor Levin
www.complextoreal.com
charldsp@gmail.com
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Chapter 1

Trigonometric Representation of
Continuous-Time Periodic Signals

Jean-Baptiste Joseph Fourier
1768 – 1830

Jean-Baptiste Joseph Fourier was a French mathematician and physicist. He was appointed
to the École Normale Supérieure, and subsequently succeeded Joseph-Louis Lagrange at the
École Polytechnique. He is best known for developing the Fourier series and its applications
to problems of heat transfer and vibrations. The Fourier transform and Fourier’s Law are
named in his honor. Fourier also did very important work in the field of astronautics, as well
as discovering the greenhouse effect for which he is not so well known. – From Wikipedia

What is Fourier Analysis

When sunlight hits rain-soaked air, an interesting phenomenon happens. Water drops
take the ostensibly pure white light and split it into multiple colors. The mathematical
description of this process, the subject of this book, was first tackled by Isac Newton
approximately 400 years ago. However, even though Newton was able to show that
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CHAPTER 1. TRIGONOMETRIC REPRESENTATION OF CT PERIODIC SIGNALS

white light is, in fact, composed of other colors, he was unable to make the jump to the
idea that light can be described as waves. He called the component colors of white light
“specter” or ghosts, from which we get the word spectrum. It took the development
of trigonometric series and the recognition of the fact that light can be thought of as a
composite wave before Fourier could apply these ideas to the problem of heat transfer.
Although the concept of harmonic trigonometric series already existed by the time he
worked on the heat transfer problem, Fourier’s contribution is considered so important
that the whole field of trigonometric waveform analysis and synthesis now bears his
name, Fourier analysis.

Fourier developed the following partial differential equation called the Diffusion equation
to describe heat transfer through solids and other media. Here, v is a function repre-
senting the measure of heat and K is the heat diffusion constant of the material.

∂ v
∂ t
= K

∂ 2v
∂ x2

(1.1)

Fourier observed that the most general solution to this equation was given as a linear
summation of sinusoids, i.e., sine and cosine waves of the form:

v(k, x) =
∞
∑

k=0

�

ak sin kx + bk cos kx
�

(1.2)

This led Fourier to conclude that an arbitrary wave can be represented as a sum of
an infinite number of weighted sinusoids, i.e., sine and cosine waves. This sinusoid
summation concept is now known as the Fourier series. This book is all about this
simple but important idea.

Fourier analysis is applicable to a wide variety of disciplines and not just signal processing,
where it is now an essential tool. In addition, Fourier analysis is used in image processing,
geothermal and seismic studies, stochastic biological processes, quantum mechanics,
acoustics, and even finance.

The Fourier analysis of waves or signals is similar to the concept of compound analysis
in chemistry. Instead of atoms coming together to form a myriad of compounds, in
signal processing sinusoids can be thought of as doing the same thing. A particular set
of these sinusoids is called the basis set. Just as a compound may consist of two units
of one element and four units of another, an arbitrary wave can consist of two units
of one base wave and four units of another. Hence, we can create a particular wave
by putting together some basis waves from the set. This process is called Synthesis.
Conversely, the process of decomposing an arbitrary wave into a set of basis waves is
termed Analysis. These two complementary and linear processes fall under the name
of Fourier analysis and its analog, the Fourier transform. In Fourier analysis, the basis
set of waves is periodic sinusoids.
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CHAPTER 1. TRIGONOMETRIC REPRESENTATION OF CT PERIODIC SIGNALS

(a) Fourier Analysis (b) Fourier Synthesis 

Figure 1.1: Fourier analysis is used to understand composite waves. (a) Analysis: breaking a given
signal into sine and cosine components and (b) Synthesis: adding certain sine and cosines to

create a desired signal.

Possibly, it was the solution of Eq. (1.1) that led Fourier to notice that summation of
harmonic sine and cosine waves leads to some interesting looking periodic waves. From
this, he posited that conversely it is also possible to create any periodic signal by the
summation of a particular set of harmonic sinusoids. This may not seem like a big thing
now but it was a revolutionary insight at the time.

Fourier’s discovery was met with incredulity at first. Rightfully so, many of his contem-
poraries did not accept that his idea was truly general and applied to all signals. After
some years of work by Fourier as well as other famous mathematicians of the age, his
theorem was upheld, albeit not under all conditions and not for all types of signals.
Subsequent development led to the Fourier transform, the extension of Fourier’s original
idea to nonperiodic signals. However, this computationally demanding concept langui-
shed for over 100 years, until the development of the Fast Fourier Transform (FFT),
by J.W. Cooley and John Tukey in 1965. The FFT, an algorithmic technique, made the
computation of Fourier series simpler and quicker and finally allowed Fourier analysis
to be recognized and used widely. It is now the premier tool of analysis in many fields.

Frequency and Time Domain Views of a Signal

Consider the wave in Fig. 1.2. One would be hard pressed to guess its equation. Yet,
it is just a sum of three waves as shown in Fig. 1.3(a), 1.3(b) and 1.3(c) of differing
frequencies and amplitudes.

Therefore, although we know that the wave of Fig. 1.2 is created from the sum of three
regular-looking sinusoids of Fig. 1.3, how could we figure this out, if we did not already
know the answer?
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Figure 1.2: An arbitrary periodic wave for which we would like to know its equation.
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Figure 1.3: The components of the arbitrary wave of figure 1.2.

Spectrum of a signal

Let us look at Fig. 1.4 which shows a general signal in three dimensions. When we see
a signal in time, we are looking at it in what is called, the Time Domain. What we are
actually observing is a composite signal. It is a sum of components which we are unable
to see. In this three-dimensional view, when we look at a signal from the side view, each
component appears as a single vertical line at its own discrete frequency. This side view
of the signal is called the Frequency Domain. Another name for this view is the Signal
Spectrum.

The Fourier series and its further refinements, such as the Fourier transform, are a
form of math that takes a function of one variable (such as time) to another (such as
frequency.) Hence this type of process is classified as a transform and studied under
transform theory. A mathematical operation, such as a typical function we see in
calculus, does not change the variable after processing and is called an operator. In
common language, we say that a transform allows us to see a signal from a different
dimension or a point of view, as we see in Fig. 1.4. In signal processing, this alternate
view of a signal, made possible by the Fourier transformation is often called a spectrum.

The spectrum is a way to quantify the component frequencies. By quantify we mean
identifying the amplitude of each of the components. The spectrum of the signal shown
in Fig. 1.2 is composed of just three frequencies and can be drawn as illustrated in
Fig. 1.5(a). This is called a one-sided amplitude spectrum. The x-axis in Fig. 1.5(a)
represents the component frequencies of the signal, whereas the y-axis is the amplitude
of those frequencies. Fig. 1.5(a) shows the amplitude spectrum with the amplitude of
each frequency, whereas Fig. 1.5(b) shows an alternate form of the spectrum called the
power spectrum. The power spectrum, a more typical representation of the spectrum
shows instead of amplitude, the quantity amplitude-squared (which is equal to the
instantaneous power), in units of Decibels (dB).
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Figure 1.4: A time domain wave seen from the frequency domain provides useful information. The
view from the frequency domain is called the spectrum of the wave.
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Figure 1.5: The frequency view of the arbitrary wave of Fig. 1.2. (a) The amplitude; and (b) the
power in dBs.

We note that Fig. 1.5(a) is in fact the side view from Fig. 1.4, showing the amplitude
of each of the components, f1, f2 and f3. The graphical representation, such as the one
shown in Fig. 1.5 is a unique signature of the signal at a particular time. This spectrum
is a distinctive and variable quality of a signal. It is not a static thing but changes as the
signal and its components change. Signals have distinctive spectrum and we can tell a
lot about a signal by looking only at its spectrum. The signals for which Fourier analysis
is considered valid, must have a non-changing spectrum. This property is generally
called stationarity.

Fundamental waves and their harmonics

The basic building blocks of Fourier analysis come from a set of harmonic sinusoids,
called the basis set. The basis set is our tinker-toy from which we can construct a variety
of waves. The set contains an infinite number of sinusoids of differing frequencies
related in a special way known as harmonic.

The top row of Fig. 1.6 shows a sinusoid of an arbitrary frequency, f0. Let us call this
arbitrary frequency the fundamental frequency. We specify some more waves based
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on this wave called the harmonics. Each harmonic frequency is an integer multiple
of the frequency of the fundamental. Fig. 1.6 shows that the second wave has half
the wavelength and twice the frequency of the first one and so on. Each kth wave
has a wavelength of T0/k and a frequency of k f0 with k being consecutive integers
greater than or equal to 1. All such waves for k > 1 are called harmonics of the
fundamental. The frequency of the fundamental is of course arbitrary, it can be any
number whatsoever, but its harmonics are strictly integer multiples of the fundamental
frequency, such as: f0, 2 f0, 3 f0, ... k f0.

Fundamental

2nd harmonic

3rd harmonic

0
T

0

2

T

0

3

T

0
f

0
2 f

0
3 f

(a)

(b)

(c)

Figure 1.6: An arbitrary fundamental wave and its harmonics.

Let us start with the expression of a set of complex sinusoids; a pair of cosine and a sine
of a certain frequency:

c(t) = cos(2π f0 t)

s(t) = sin(2π f0 t)
(1.3)

Here, f0 is an arbitrary frequency (measured in cycles/second or Hz). We will call this
frequency the fundamental. The basic period T , of this sinusoid is the inverse of the
frequency. Note that if a sinusoid is periodic with period T , then it is also periodic with
period 2T , 3T , etc. for integer multiples of the basic period. From this we obtain the
definition of harmonic waves.

A set of waves is harmonic if its frequency is an integer multiple of the fundamental
wave’s frequency. We can write this as a set.

c(t) = cos(2π fk t)

s(t) = sin(2π fk t)
(1.4)

We have introduced an index, k in Eq. (1.4) such that each harmonic frequency is
equal to k times the fundamental frequency, fk = k f0, with k any arbitrary integer,
0, 1, 2, . . . ,∞.
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In Fourier series formulation, the index k spans all positive integers to infinity, including
zero. Note that the fundamental wave or the first harmonic is often defined as the one
for k = 1. Hence, the frequency of the first harmonic and the fundamental frequency
are the same. The wave obtained for k = 0 is of course nothing but a flat line. The wave
for k = 2 is called the second harmonic and so on for higher values of the index k.

Let us rewrite the definition of the harmonics allowing the phase and the amplitude to
vary. We give each harmonic a unique amplitude and phase and rewrite the harmonic
signals as:

ck(t) = ak cos(2πk f0 t +φk)

sk(t) = bk sin(2πk f0 t +φk)
(1.5)

The wave ck(t) is a cosine wave of kth harmonic frequency or k f0, its amplitude being
ak and the phase in radians being φk. The signal sk(t) is a sine wave with similarly
unique amplitude and phase for the same harmonic frequency, k f0. Now although the
frequencies are still related by multiples of integer k, we are allowing the amplitude and
the phase of each harmonic to be different. Such waves are still considered harmonic.
The amplitude coefficient ak for a cosine and bk for a sine are now arbitrary.

What is amplitude? Amplitude can be thought of as the value of a wave’s height
above its mean at a particular time. Amplitude can be a positive or a negative quantity,
depending on where it is being measured. It is the instantaneous value of the wave’s
height. There is, however, an another definition of the amplitude. If a wave is given
by the expression: f (t) = a cos(ωt), then the instantaneous value, f (t) is scaled by
the coefficient, a. The peak value of the instantaneous amplitude for this wave is never
greater than a, hence this coefficient is called the peak amplitude of the wave. In
common language, the word peak is often left off. Hence, there is confusion whether
we are talking about the instantaneous value of the amplitude, f (t) or the peak value
of the amplitude, a. We need to be aware of which amplitude we are talking about.
Most often we are interested in the coefficient of the wave which is its peak amplitude.
In Eq. (1.5), the terms ak and bk are the amplitudes (peak) of the waves.

What is phase? The argument of a sinusoid sin(θ ), is in fact an angle, or the term θ .
However, in signal processing, we often need to represent a sinusoid as a function of
time. We do this by writing the sinusoid as sin(ωt), where ω is the radial frequency
defined in terms of angles per time. Both forms of the sinusoid argument, the θ and its
equivalent form ωt, are called the instantaneous phase of the sinusoid. We can shift
a sinusoid, or in fact any wave in time, by adding an independent term, φ, to the
instantaneous phase, θ , writing the sinusoid as sin(θ + φ). This second term, φ, is
often assumed to be fixed with time (for linear systems) and is commonly called the
phase. This can be confusing, because we have two quantities here, both called phase.
The total phase at any time is made up of these two parts, one a fixed quantity and
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the other changing with time. However, generally when we say phase, we are referring
not to the instantaneous quantity ωt, but to the fixed quantity, φ. This term is more
properly called the phase shift but the qualifier word shift is often left off. In Eq. (1.5),
the term φk is the phase (shift) for the kth wave.

Figure 1.7(a) shows that the amplitude of the sinusoid is 1.0, even though the full
excursion is 2.0. Figure 1.7(b) shows that a phase shift of φ = π/2 has turned the
sine wave into a cosine wave. This phase shift has no effect on the amplitude or the
frequency of the wave, hence phase, amplitude and frequency are independent terms.
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Figure 1.7: The phase of a sinusoid consists of its instantaneous and changing phase, (θ =ωt),
plus a constant phase term, φ, called the phase shift as shown in (b).

The sine and cosine waves differ in phase by π/2 radians, or 90◦. When two signals
differ in phase by −90◦ or +90◦, they are said to be in quadrature, hence sine and
cosine waves are in quadrature. For linear Fourier analysis, it is assumed that phase (the
φ term) and frequency are not a function of time, i.e., both the phase and the frequency
of a signal do not change over time. This is one of the fundamental assumptions of
Fourier analysis. All signals subjected to Fourier analysis are assumed to have fixed and
unchanging frequencies as well as the phase term, φ. This assumption implies that the
signal is stationary, a concept discussed in Chapter 8.

In Fig. 1.8, two harmonics of a sinusoid of frequency 1 Hz are seen, with sines on the
left side and cosines on the right. Both the sines and cosines have a peak amplitude
of 1. Depending on your field of interest, the units of amplitude can be pretty much
anything. In this book, the signal amplitude units will be in volts and phase in radians.

The cosine always reaches its peak amplitude at time t = 0, and has a phase of π/2 at
that time. The sine, no matter what the frequency, always has an amplitude of zero at
time t = 0, which is equivalent to a phase of 0 radians. Hence, no matter how many
sine waves of different frequencies and amplitudes are added together, they will never
achieve any amplitude other than zero at time = 0, and can represent only those waves
that are zero-valued at time t = 0. Similarly, the addition of various cosines will not
achieve an amplitude of 0 at time t = 0.
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Figure 1.8: The fundamental of f0 = 1 Hz and its two cosine and sine harmonics. All sines start at
time t = 0, at amplitude = 0 and all cosines at the peak amplitude.
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Figure 1.9: Sums of constant amplitude harmonics. (a) Sum of three cosines starts at an
amplitude of 3; (b) sum of sines starts at 0; and (c) summation of both sines and cosines also

starts at 3 since sines add nothing at t = 0.

Harmonics as Basis Functions

In Fig. 1.9 three cosine and three sine waves with amplitude of 1 are added together,
respectively. After the addition of these three waves, it is seen that the cosines in
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Fig. 1.9(a) add such that the peak is equal to 3. This happens because the cosine is
an even wave. The cosines add constructively at time t = 0 and at other times that are
integer-periods away. The sum of the three sine waves added together in Fig. 1.9(b)
however, looks strange. This asymmetry is a consequence of the sine wave being an odd
wave. In Fig. 1.9(c), the three sine and three cosine waves are all added together. The
behavior of this summation defies an easy explanation.

To examine this effect further, we add together an even larger number, 20 cosine and
20 sine harmonics; each of the same amplitude and 0 phase. Fig. 1.10(a) shows clearly
that the cosine sum is symmetric about the time t = 0 point. Similarly, Fig. 1.10(b),
shows that the sine sum is non-symmetric. Now, we add both of these waves per the
following equation:

s(t) =
∞
∑

k=0

�

� cos(kω0 t) + sin(kω0 t)
�

�

The summation of harmonic sine and cosine waves of equal amplitudes gives a function
that is approaching an impulse train, i.e., a signal consisting of very narrow pulses. This
result in Fig. 1.10(c) gives a clue to an important property of sinusoids that will be used
in subsequent chapters. This property says that a summation of an infinite number of
harmonic sinusoids (sine and cosine) results in an impulse train.
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Figure 1.10: Sums of large numbers of both sine and cosine harmonics approach an impulse train.
Note that the sum of cosines creates an even blip (a), whereas for sines it is an odd blip (b). In (c),

we see the absolute value of the sum (a) and (b).

What if we allow the amplitudes and phases of these sinusoid to vary? An example of a
wave created using this idea is shown in Fig. 1.11, where each sine and cosine wave has
a different amplitude and a different phase. Note that the frequency of the composite
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wave is equal to the frequency of the fundamental, which is 1 Hz.

s(t) = 0.1 cos(2πt − 0.5) + 0.3cos(4πt)− 0.4 cos(6πt − 0.1)

− 0.5 sin(2πt + 0.1)− 0.8 sin(4πt − 0.3) + 0.67 sin(6πt + 0.19) (1.6)

The most important thing to note is that by adding any number of harmonics, and
allowing the amplitude and phase of each to vary, we can create or mimic many other
waves. Figure 1.11 shows an example of just one such “interesting” looking wave
created by using only three different sinusoids of distinctly different amplitudes and
phases. This is the main idea behind Fourier synthesis and analysis.
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Figure 1.11: A wave comprising arbitrary amplitude harmonics of Eq. (1.6) begins to look like a
real signal.

Evenness and oddness of sinusoids

Sinusoids have many interesting properties, a few of which are very useful in Fourier
analysis. One important property of harmonic sine and cosine waves is asymmetry or
oddness of the wave. All sine waves are considered odd functions because they obey the
following definition of an odd function.

f (x) = − f (−x) (1.7)

If you look at a sine wave, you see that it starts with an amplitude of 0 at time t = 0.
If we were to flip it about the y-axis, the images would not overlap. However, if one
of the sides was first flipped about the x-axis, then they do overlap. This describes the
oddness of signals. It requires two flips for values to coincide, as we can see from the
two negative signs in Eq. (1.7).

The cosine waves on the other hand are called even functions by a similar definition.
The two sides of a cosine wave, if flipped about the y-axis, would overlap, hence there
is only one negative in the equation below for even symmetry.

f (x) = f (−x) (1.8)

By the superposition principle, if multiple odd waves are summed together, the resulting
wave will remain odd. In contrast, if multiple even waves are summed, then the resulting

15



CHAPTER 1. TRIGONOMETRIC REPRESENTATION OF CT PERIODIC SIGNALS

wave will remain even, and a mixture will have no symmetry. This becomes important
when synthesizing, which is the process of putting some waves together to make a
desired wave. If a wave to be synthesized is purely an odd, or an even function, then it
will only contain sines, or cosines, respectively, depending on its symmetry.

Making waves

Using the idea of harmonic summation, we can create a variety of waveforms. All we
need to do is to change the amplitudes and the phases of the harmonics as we see fit.
Certain combinations of these parameters lead to great-looking and useful waves that
are periodic with the frequency of the fundamental.

Square waves

Now we examine the construction of a square wave. A square wave is not actually
square in any particular sense. It is a wave where each period looks somewhat like two
rectangles of opposite signs, as seen in Fig. 1.12(d). Yes, it has wiggles in it, and, it is
not actually square. The square waves are very useful in signal processing and are used
for data transmission. It is amazing that we can create them by just adding a bunch
of sinusoids. The more sinusoids we add to the summation, the better the wave looks,
with the wiggles getting smaller.

In Fig. 1.12, we have created a square wave by adding together only a few harmonic
sinusoids. As the square wave shown in Fig. 1.12(a) is an odd function, we know
that only sine waves are needed in its construction, a process also called synthesis. In
Fig. 1.12(b), we have added to the fundamental of frequency ω0, only one sine wave
of frequency 3ω0 and amplitude of 1

3 . In Fig. 1.12(c), we add one more sine wave of
frequency 5ω0 and of amplitude 1

5 , and in the last case another sine wave of frequency
7ω0 and of amplitude 1

7 is added. This last result looks good.

Figure 1.13(a) shows the same type of wave but shifted so that it is an even wave, per
Eq. (1.8). This even wave can be created using just the cosines. For both cases, we start
with a sinusoid of the fundamental frequency. This seems like a good start. But why?
Because a periodic wave created from the addition of harmonics will always be periodic
with the period of the fundamental, the lowest frequency of the signal. We then add
more harmonic sine waves for the odd version of the square wave in Fig. 1.12(a) and
cosine waves for the even version in Fig. 1.13(a) and watch the evolution of the square
wave. With only three terms in the addition, the results are pretty decent looking square
waves.

Each addition of a sine wave (or a cosine) with a specific frequency and amplitude
makes the synthesized wave appear closer to a square wave. We are, in fact, cooking up
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Figure 1.12: Synthesizing an odd square wave by adding odd harmonics of differing amplitudes.
(a) Start with fundamental of 1 Hz, (b) add harmonic of 3 Hz, (c) add harmonic of 5 Hz, (d) add

harmonic of 7 Hz.
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Figure 1.13: Synthesizing an even square wave by adding even harmonics of differing amplitudes.

interesting recipes for making all kinds of waves using specific “quantities” of sinusoids.
The quantities we vary are the amplitude and the phase of each harmonic. Collectively,
the amplitude and the phase of a particular harmonic is called its coefficient. So to create
a particular wave, we are controlling or changing the coefficients of the harmonics.

Here are the recipes for the two types of square waves, the odd and the even. The
ingredient list is limited, as we used only three terms beyond the fundamental, which
is underlined.

x1 = sin(ω0 t) +
1
3

sin(3ω0 t) +
1
5

sin(5ω0 t) +
1
7

sin(7ω0 t)

x2 = cos(ω0 t)−
1
3

cos(3ω0 t) +
1
5

cos(5ω0 t)−
1
7

cos(7ω0 t)
(1.9)

Of note, in both of these “recipes”, only odd harmonics (i.e. the harmonic index k is
odd.) are used. This is true for both the odd and even versions of the square wave. The
reason why only odd harmonics are used is that sinusoids of even harmonics cancel the
odd harmonics as we see in Fig. 1.14 and hence mixing of odd and even harmonics does
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not allow us to create useful waves. We see in Fig. 1.14 that the two even harmonics of
frequencies 2 and 4 Hz are poles apart from the odd harmonics of frequencies 1 and 3 Hz
(at t = 0.5 sec.). We find that summation of consecutive harmonics begins to approach
an impulse-like signal, as we see in Fig. 1.10 due to this destructive behavior.
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Figure 1.14: Even order harmonics are destructive and hence are not used in combination with
odds to create most communications signals such as square waves. Note here that frequencies 1

and 3 Hz are antipodal to frequencies of 2 and 4 Hz.

The square wave is probably the single most important wave in signal processing and
we will keep coming back to it in each chapter. The summation with k as the odd integer
can go from−∞ to+∞ to form a really great looking square wave. The more terms we
add, the closer we get to what we are trying to achieve. But in fact for square waves, we
are never able to create a perfect square wave, as Gibbs phenomena takes hold near the
corners. The corners never do become the true right angles as we would wish. This tells
us that this form of harmonic representation, despite our best efforts, may not result in
a perfect reconstruction for every signal, for example square waves.

Gibbs phenomenon

The square waves created in Fig. 1.12 and Fig. 1.13 have a fair amount of ripple (formal
name for the wiggle) in the center part of the square wave. We can increase the number
of terms to see if it goes away. Figure 1.15 shows that even as K, the number of
terms in the square wave summation is increased, the overshoot at the corners never
goes away. There remains, approximately an 18 % overshoot (in height) even with a
very large number of terms in the summation, although its width does decrease. This
behavior, called the Gibbs phenomenon, discovered by Henry Wilbraham (1848) and
by J. Willard Gibbs (1899), is a clear demonstration that Fourier representation can not
accurately reconstruct all waves, particularly those that are piece-wise continuous but
with discontinuities. Hence, waveforms that have discontinuities in amplitude, always
cause this effect and hence are avoided in signal processing. Instead of sharp-edged
square waves, we use shaped waves with gentle corners and curves, ones that can be
represented with better fidelity using just a finite number of sinusoids.
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Figure 1.15: Gibbs phenomenon does not allow for a perfect Fourier representation of a square
wave.

Creating a sawtooth wave

Let us look at one more special signal, a sawtooth wave. The sawtooth wave is an odd
function, hence, composed only of sine waves. Its equation is given as

sawtooth(t) =
2
π

∞
∑

k=1

(−1)k+1 sin(2πk f0 t)
k

(1.10)
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Figure 1.16: Evolution of a sawtooth wave, (a) fundamental sinusoid of desired frequency, (b)
addition of five harmonics, (c) addition of eleven harmonics, and (d) with addition of 20

harmonics, a pretty decent looking saw-tooth wave presents itself.

Note that in Eq. (1.10) the coefficient, (−1)k+1

k is inversely proportional to the harmonic
index, k and hence the contribution of higher frequencies is decreasing. This is also true
for the square waves. We write this equation allowing the index k to go to∞. In real
life, we can often get by with just a few terms. Notice that Gibbs phenomena is present
at the corners for this representation also. Hence, smooth waves lend to best Fourier
synthesis.
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Generalizing the Fourier Series Equation

A Fourier series is a general equation consisting of the summation of weighted harmonics,
whereby manipulating the weighting (hence coefficients) we can represent any periodic
wave. We called it a recipe but its mathematical name is Fourier representation.

f (t) =
K
∑

k=1

ak cos(2πk f0 t) +
K
∑

k=1

bk sin(2πk f0 t) (1.11)

The coefficient ak represents the coefficient of the kth cosine wave, and bk of the kth
sine wave. What is K? This is the largest harmonic index we use in any particular
summation. If we use only 10 terms (or harmonics), then K = 10. We can control this
parameter depending on the accuracy desired. For a general representation, we set K
to∞.

The sum of sines and cosines is always symmetrical about the x-axis so there is no
possibility of representing a wave with a DC offset using the form in Eq. (1.11). (The
term DC comes from direct current but it is used in signal processing to mean a constant
as well as the mean power of a signal.) To create a wave of nonzero mean, a new term
must be added to Eq. 1.11. The constant, a0 is included in Eq. (1.12) so we can create
waves that can move up (or down) from the x-axis.

f (t) = a0 +
∞
∑

k=1

ak cos(2π fk t) +
∞
∑

k=1

bk sin(2π fk t) (1.12)

Eq. (1.12) is called the Fourier series equation. The coefficients a0, ak, bk are called
the Fourier Series Coefficients (FSC). The process of Fourier analysis consists of compu-
ting these three types of coefficients, given an arbitrary periodic wave, f (t).

Multiple ways of writing the Fourier series equation

There are several different forms of the Fourier series equation in literature, and that
can make understanding this equation harder.

The following representation uses the radial frequency,ωk = 2π fk to make the equation
simpler to type. We can write this form of Fourier series as:

f (t) = a0 +
∞
∑

k=1

ak cos(ωk t) +
∞
∑

k=1

bk sin(ωk t) (1.13)

Now, we define T0 as the period of the fundamental frequency as: T0 =
1
f0

. Then
the period of the kth harmonic becomes T0/k and its frequency, fk = k/T0. We can
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alternately write the Fourier series equation by adopting this form of the frequency in
Eq. (1.14).

f (t) = a0 +
∞
∑

k=1

ak cos
�

2πk
T0

t
�

+
∞
∑

k=1

bk sin
�

2πk
T0

t
�

(1.14)

We can shorten the Fourier series equation by starting at zero frequency, hence index
k starts at 0 instead of 1. Now the DC term disappears as it is included as the zero
frequency coefficient obtained by setting the index k = 0. Here is this form with the DC
term gone:

f (t) =
∞
∑

k=0

ak cos(2π fk t) + bk sin(2π fk t) (1.15)

This can be simplified further by getting rid of the sine term altogether. Sines and cosines
are really the same thing, one is just the shifted version of the other. The representation
in Eq. (1.13) can be written solely with cosines with a shift. This way sine becomes a
cosine with a π/2 shift and we get this form of the equation.

f (t) = a0 +
∞
∑

k=1

ck cos(ωk t +φk) (1.16)

In this form, each harmonic, whether a sine or a cosine, can be thought of as a cosine of
some phase. Hence each harmonic is represented by two cosines, one with a zero phase
shift and the other with a shift of π/2. Now the whole expression uses only cosine wave
and the index, k spans not from 0 to 1, but from −∞ to +∞.

f (t) = c1 cos(ω1 t ±φ1) + c2 cos(ω2 t ±φ2) + c3 cos(ω3 t ±φ3) + . . .

Fourier series in complex exponential form

In its most important representation, the complex representation, the Fourier series is
written as:

f (t) =
∞
∑

k=−∞
Cke j2π k

T0
t (1.17)

Here, we introduce a new term, the complex exponential, as underlined in Eq. (1.17).
The complex exponential (CE) represents both a sine and a cosine in one concise form.
In the next chapter, we will discuss this function in detail. The expanded form of the
Fourier series in terms of the complex exponential looks like this:

f (t) = C0 + C1e j2π 1
T0

t + C2e j2π 2
T0

t + C3e j2π 3
T0

t + . . .
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This form shows that we can create a periodic function by summing together complex
exponentials. Although the complex form of the Fourier series is scary looking, it is the
most commonly used form. In the next chapter, we will look at how it is derived and
why we use it in Fourier analysis. All these different representations of the Fourier series
are identical and mean exactly the same thing. They are all different ways in which you
see the Fourier series equation written in books.

The Fourier Analysis

The process of adding together a bunch of sinusoids to create useful waves is called the
Synthesis process. Synthesis of waveforms, is of course, interesting but what is really
useful is the reverse process, that is, to take an arbitrary periodic signal and figure
out its components. It’s like trying to figure out the ingredients of a particular dish.
By ingredients, we mean frequencies in the signal that contain significant power or
amplitudes. This is the main use of Fourier analysis. It is called, not surprisingly, the
Analysis part. What this involves is to make a guess of the fundamental frequency, f0,
and then computing the amplitudes (coefficients) of a certain number of harmonics.
There is no guarantee that the fundamental chosen will result in finding all the main
signal components exactly. Nevertheless, in most cases, we have a pretty good idea of
signal components a-priori. So the process works well enough.

The usefulness of the process can be seen in the equation of the sawtooth wave in
Eq. (1.10). The Fourier series allows us to create an estimate of the wave using a few
or many terms. Hence, Fourier series represents an estimate of the true representation,
the accuracy of which depends on the number of terms used.

The Fourier analysis process consists of finding the series coefficients. When we talk
about Fourier series coefficients (FSC), we are talking about the amplitudes of the sine
and cosine harmonics, and nothing else. Once we decide on a fundamental frequency
-a starting point for the analysis- we already know all the harmonic frequencies since
they are integer multiples of the fundamental frequency. All we have to do now is to
compute the coefficients. The following are the three types of coefficients we need to
compute.

1. The DC offset or the coefficient of the 0th frequency, k = 0.
2. Coefficients of the cosine ak cos(2πk f0 t) with k = 1,2, 3, . . . ,∞.
3. Coefficients of the sine bk sin(2πk f0 t) with k = 1, 2,3, . . . ,∞.

We will discuss each of these three types of coefficients separately and see how to
compute them.
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Computing a0, the DC coefficient

We are given an arbitrary periodic signal, f (t), of period T. The Fourier series says that
the signal f (t) is equivalent to a summation of K sinusoidal harmonics. Our task is to
find the coefficients of each of these harmonics starting with k = 0 to k = K . This task
is called Fourier analysis.

f (t) = a0 +
∞
∑

k=1

ak cos(2π fk t) + bk sin(2π fk t) (1.18)

The constant a0 in the Fourier series equation represents the DC offset. If our target
wave has a nonzero DC component (if its average amplitude value is not zero), then we
know that a0 6= 0. But before we compute it, let’s take a look at a useful property of
sine and cosine waves. Both sine and cosine waves are symmetrical about the x-axis.
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Figure 1.17: The area under both sine and cosine over one period is zero, no matter what their
frequency.

When you integrate a sine or a cosine wave over one period, you always get zero. The
area above the x-axis cancels out the area below it. This is always true over one period
as we can see in Fig. 1.17. The same is also true for the sum of sine and cosine waves.
Any wave made by summing sine and cosine waves also has zero area over one period.
If we were to integrate the given signal f (t) over one period, as in Eq. (1.18), the area
obtained will have to come from the coefficient a0 only. None of the sinusoids makes
any contribution to the integral and they will all fall out. Hence, the calculation of the
DC term becomes easy simply because the integral of the harmonics is zero.

∫ T0

0

f (t) dt=

∫ T0

0

a0 dt+

���
��

���
���

���
���

���
�:0

∫ T0

0

� ∞
∑

k=1

ak cos(2π fk t) + bk sin(2π fk t)
�

dt

We compute a0 by computing the integral of the wave over one period. The area under
one period of this wave is equal to

∫ T0

0

f (t) dt=

∫ T0

0

a0 dt
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Figure 1.18: (a) The periodic signal before integration. (b) After integration of exactly one period,
only the DC component is left.

Integrating this simple equation, we get,

∫ T0

0

f (t) dt= a0T0

We can now write a very easy equation for the first coefficient, a0

a0 =
1
T0

∫ T0

0

f (t) dt (1.19)

Summary: To compute the DC coefficient, integrate the target signal f (t) over one
period. The result of the integration, normalized by the period, is equal to the 0th
coefficient. Hence the area under the given signal comes only from the 0th coefficient.

Computing bk, the coefficients of sine harmonics

We are assuming that our target signal is composed of sines and cosine harmonics. Now
we multiply the target signal by just one harmonic of kth frequency. We will get various
different types of combinations. We will get sine harmonics multiplied by sine and cosine
harmonics of both the same and different frequencies, or in other words a lot of terms
to solve.

Here is a target signal we wish to represent with just two harmonics (1 and 3).

f (t) = a1 cos(ω0 t) + b1 sin(ω0 t) + a3 cos(3ω0 t) + b3 sin(3ω0)

We want to compute the coefficient of the first sine harmonic or the term b1. To do
that we multiply the signal f (t) by this same harmonic. We get in the product, various
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combinations of sines and cosines:
∫ t+T0

t
cos(ω0 t)× sin(ω0 t) dt

∫ t+T0

t
sin(ω0 t)× sin(ω0 t) dt

∫ t+T0

t
cos(3ω0 t)× sin(ω0 t) dt

∫ t+T0

t
sin(3ω0 t)× sin(ω0 t) dt

Now compute the coefficient, a1, we multiply the representation by cos(ω0 t). We get
these various types of products:

∫ t+T0

t
cos(ω0 t)× cos(ω0 t) dt

∫ t+T0

t
sin(ω0 t)× cos(ω0 t) dt

∫ t+T0

t
cos(3ω0 t)× cos(ω0 t) dt

∫ t+T0

t
sin(3ω0 t)× cos(ω0 t) dt

From these two examples, we see that in total there exist, just six different types of
products, no matter how many harmonics we want to use to represent the target signal.
These types, in terms of sine and cosine products are:

1. Cosine times a sine of the same frequency, cos(kω0 t)× sin(kω0 t)
2. Sine times a sine of same frequency, sin(kω0 t)× sin(kω0 t)
3. Cosine times a sine of a different frequency, cos(kω0 t)× sin(mω0 t)
4. Sine times a sine of a different frequency, sin(kω0 t)× sin(mω0 t)
5. Cosine times a cosine of same frequency, cos(kω0 t)× cos(kω0 t)
6. Cosine times a cosine of a different frequency, cos(kω0 t)× cos(mω0 t)

We need to compute the integral of each of these types of products over one period
for the Fourier equation. Conveniently, it turns out, that the integral of most of these
sinusoidal products, over one period is zero, except for Type 2 and Type 5, when the
frequencies of the sinusoids coincide. This makes the problem so much more tractable!
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It is easy to show that these terms are zero. However, let us examine first what happens
when we integrate a type 2 product, a sine times a sine of the same frequency, over
one period. We notice that the product of the two sine waves of the same frequency,
as shown in Fig. 1.19, lies entirely above the x-axis and has a net positive area which
is proportional to the coefficient bk. From integral tables we can compute this area as
equal to

∫ T0

0

bk sin(kω0 t)× sin(kω0 t) dt= bk
T0

2
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Figure 1.19: A sine wave multiplied by a sine wave of the same frequency has nonzero area under
one period.

Now let us take a look at the integral of a Type 4 product, i.e. a sine wave multiplied by
a sine wave of a different frequency.

sin(kω0 t)× sin(mω0 t)
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Figure 1.20: A sine wave multiplied by a sine wave of a different frequency has zero area under
one period.

Figure 1.20 shows in the time domain the product of two sine waves of different fre-
quencies. It may not be obvious from the figure, but the total area in one period of this
product is zero. We make an important observation that the area in one period of a sine
wave multiplied by any of its harmonics is zero. We conclude that when we multiply a
signal by any of its harmonics, and integrate the product over one period, then the result
can be used to find the contribution of just that harmonic and none other. The integral
tells us how much of that frequency is present in the target signal. All other sinusoids
in the signal contribute nothing. The individual contribution to the signal f (t) by the
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kth harmonic can be written as:
∫ T0

0

bk sin(kω0 t)× sin(mω0 t) dt= 0 for k 6= m.

∫ T0

0

bk sin(kω0 t)× sin(mω0 t) dt=
T0

2
bk for k = m.

The same is true for cosine waves or types 5 and 6.

∫ T0

0

ak cos(kω0 t)× cos(mω0 t) dt= 0 for k 6= m.

∫ T0

0

ak cos(kω0 t)× cos(mω0 t) dt=
T0

2
ak for k = m.

We see that the result of the integration of the product of two harmonics when their
frequencies are unequal is zero. It is nonzero only when the waves have the same
frequency. Hence, if we multiply our signal by its K harmonics, and integrate K times,
the result for each case is the coefficient of the harmonic being used for multiplication.

Let us now look at the product of a sine wave and a cosine wave of the same frequency,
or Type 1. For this case, as shown in Fig. 1.21, the net area under the product is also
zero.
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Figure 1.21: A sine wave multiplied by a cosine has total area of zero under one period.

The integral of Type 3 products is also zero. Hence, we note this important result; the
area under the product of a sine and a cosine over one period is zero whether the frequencies
are the same or not. Sines and cosines just don’t agree. This is also the concept of
orthogonality. We say that these waves are orthogonal to each other as they contribute
nothing to the integral. Summarizing the results:

∫ T

0

bk cos(kω0 t)× sin(mω0 t) dt= 0 (1.20)

A practical interpretation of these properties is that sine and cosine waves act as filtering
signals. When a signal, is multiplied by a sinusoid of a particular frequency, the integral
is proportional to the content of that multiplying sinusoid, (by which we mean its
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amplitude). Hence, sinusoids behave as narrow-band filters. This is the fundamental
concept of a filter.

Here are the key results we will be using in calculating the coefficients of the Fourier
equation:

1. If you multiply a sine or a cosine wave by any of its harmonics, the area under the
product is zero.

2. If you multiply a sine or a cosine of a particular frequency by itself, the area under
the product is proportional to the Fourier coefficient of that frequency.

3. The area under a sine wave multiplied by a harmonic cosine is always zero.
(Because sine and cosine are orthogonal!)

We use these observations to compute the bk coefficients. We successively multiply the
target signal, f (t) by a sine wave of a specific harmonic frequency and then integrate
over one period as in the equation below. All terms are zero except one. This term is
given by:

∫ T0

0

bk sin(kω0 t) sin(kω0 t) dt=
bkT0

2

From this we obtain the coefficient of the sine, bk as follows

bk =
2
T0

∫ T0

0

f (t) sin(kω0 t) dt (1.21)

The coefficient bk is computed by taking the target signal over one period, success-
ively multiplying it with a sine wave of kth harmonic frequency and then integrating.
The result of the integration is then multiplied (or normalized) by 2/T0 to obtain the
coefficient for that particular harmonic. If we do this K times, we get K independent bk

coefficients.

Computing ak, the coefficients of cosine harmonics

Now we need to do something similar for cosine coefficients. The process of computing
the coefficients of the cosine harmonics is exactly the same as the one used for the sine
waves. Instead of multiplying the target signal, f (t) by a sine wave, we multiply the
target signal sequentially by a cosine wave of frequency, kω0. We get exactly the same
result as when we compute the sine coefficients. Only one term will remain in the big
long multiplication for each value of k. That term is

∫ T0

0

ak cos(kω0 t) cos(kω0 t) dt=
akT0

2

28



CHAPTER 1. TRIGONOMETRIC REPRESENTATION OF CT PERIODIC SIGNALS

The coefficient ak hence can be calculated by multiplying f (t) by the kth harmonic and
integrating the expression. The result is proportional to the coefficient. This expression
is nearly identical to Eq. (1.21) for the bk coefficients.

ak =
2
T0

∫ T0

0

f (t) cos(kω0 t) dt (1.22)

In all, we do this 2K times, with K computations each for the sine and, K for the cosine.

Conceptually, the process of computing the coefficients consists of filtering the target
signal, one frequency at a time. Hence, a spectrum can be seen as tiny little filter fingers
that pull out the quantity (amplitude) of that harmonic in the signal.

In some simple cases, when given a signal that is composed of sinusoids, we do not need
to do any calculations, as the coefficients are there in plain sight for us to see as in the
following example.

Example 1.1. What are the FSC of this signal:

f (t) = 0.8 sin(6πt)− 0.3cos(6πt) + 0.75 cos(12πt)

The signal is already in the form of a Fourier series. Just by looking we can tell that
the coefficient a0 is 0. We set the fundamental frequency at 1 Hz, because then both
frequencies in the signal, 3 Hz and 6 Hz fall on a harmonic. The coefficients by obser-
vation are: a0 = 0, a3 = −0.3, b3 = 0.8 and a6 = 0.75. Of course we could have set
the fundamental as 3 Hz, in which case the coefficients would be given as: a0 = 0,
a1 = −0.3, b1 = 0.8 and a2 = 0.75. Nothing has changed except the index.

We just did our first Fourier analysis without lifting a pencil! Now something a little
more complicated.

Example 1.2. What are the FSC of this signal:

f (t) = cos3(2πt)
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Figure 1.22: The signal cos3(2πt), in solid curve, and its first order representation in dashed line.
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From Fig. 1.22, the plot of this signal in the time-domain, we can spot two pieces of
information. The first is that the period of the wave is 1 second (its frequency is 1 Hz.),
and second, the symmetry of the signal is even. Because it is an even signal, it can be
represented solely with cosine components. (But, of course, that makes sense as the
function is cosine-cubed.) But because this a cubed function, at first we might not know
what to do next. Fortunately, we can expand this function and put it in the Fourier
series form, in which case the coefficients would become obvious. But instead, we will
find the coefficients the hard way, and that means integration. First we calculate the a0

coefficient using Eq. (1.19) to determine the DC offset.

a0 =

∫ 1

0

cos3(2πt) dt= 0

This integration gives us a zero and the result agrees with the graph in Fig. 1.22. The
function has a symmetry about the x-axis meaning there is no DC offset. Now using
Eq. (1.22) we can determine the ak coefficients (of cosine) starting with the fundamental
harmonic. We set fundamental frequency f0 equal to 1 Hz.

a1 = 2

∫ 1

0

cos3(2πt) cos(1× 2πt) dt= 0.75

The Fourier representation of this signal is now given by 0.75 cos(2πt). Figure 1.22
plots in the dashed line the representation of the signal using only the a1 coefficient. It
is clear that one coefficient is not enough to properly represent the signal. We should
calculate a few more coefficients. However, it is amazing, how close we are with just
one term!

a2 = 2

∫ 1

0

cos3(2πt) cos(2× 2πt) dt= 0

a3 = 2

∫ 1

0

cos3(2πt) cos(3× 2πt) dt= 0.25

With a0 = 0, a1 = 0.75, a2 = 0, and a3 = 0.25, the representation is given as:

f (t) = 0.75cos(2πt) + 0.25 cos(6πt)

This is the Fourier series representation of the signal given to us as cos3(2πt). If we
continue to calculate more coefficients (for k > 3), we will see that they are all zero
after a3. From this, we can say that function cosine cubed is, in fact, made up of only
two cosines of frequency 1 and 3 Hz. In this case, Fourier series representation is an
exact representation of the signal, but this is not always the case.
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Example 1.3. What are the FSC of this signal?

f (t) = sin2(2πt) + sin(2πt)
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Figure 1.23: The signal, f (t) = sin2(2πt) + sin(2πt).

The analysis of this signal uses the ideas from the first two examples. The signal has
a linear part, sin(2πt), and a non-linear part, sin2(2πt). The best way to compute its
Fourier series representation is to convert the non-linear term to a linear term. Using
trigonometric identities, we do this conversion and rewrite the signal with all linear
terms as:

f (t) =
1
2
+ sin(2πt)−

1
2

cos(4πt)

From here, now that the signal is very nearly in Fourier form, we can expect to have
nonzero a0, b1 and a2 coefficients. The values of these will match the coefficients of the
above equation. Solving for these the hard way, using integration, we show that this is
indeed the case. The Fourier representation of this signal is exact. This only happens
if the original signal is composed only of harmonic sinusoids. In real life, this situation
is unlikely. Practical signals are almost never composed solely of harmonic sinusoids.
That is our challenge. When we compute the Fourier representation, we are indeed
estimating the form of the signal. And for this estimation, we use Fourier analysis.

a0 =

∫ 1

0

�

sin2(2πt) + sin(2πt)
�

dt=
1
2

a1 = 2

∫ 1

0

�

sin2(2πt) + sin(2πt)) cos(1 · 2πt)
�

dt= 0

a2 = 2

∫ 1

0

�

sin2(2πt) + sin(2πt)) cos(2 · 2πt)
�

dt= −
1
2

b1 = 2

∫ 1

0

�

sin2(2πt) + sin(2πt)) sin(1 · 2πt)
�

dt= 1

b2 = 2

∫ 1

0

�

sin2(2πt) + sin(2πt)) sin(2 · 2πt)
�

dt= 0

Note that there is a 1
2 in the equation of the signal, and this is the same thing as a DC

offset, hence this is the a0 coefficient. There is one cosine at a frequency of 2 Hz with
amplitude of −1

2 , which means that the coefficient a2 would be −1
2 . There is a sine at
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frequency of 1 Hz of amplitude 1, hence b1 should be 1 and, it is. We could have solved
this problem by observation only, without doing any calculations.

Coefficients become the spectrum

How do we go from coefficients to a spectrum? Assume that we have a signal which
we have analyzed and have found that it has nine harmonics with f0 = 2.5 Hz. The
coefficients of the nine harmonics starting with k = 1 are given by:

ak = [0.25, 0.2, 0.7, 0.5, -0.2, 0.2, 0.1, -0.05, 0.02]

bk = [0.4, -0.3, 0.7, 0.7, 0.3, 0.275, 0.25, 0.2, 0.1]

Here, ak are the coefficients of the cosine harmonics and bk are the coefficients of the
sine harmonics. We plot these in a bar graph in Fig. 1.24 as a function of the index,
k. Both sine and cosine of the same frequency are plotted next to each other. This is a
spectrum that in essence displays the recipe of the signal. It tells us how much of each
harmonic, i.e., its amplitude, we need to recreate the signal. Given this spectrum, you
should be able to write the Fourier series equation for this signal.

Commonly a spectrum is given in terms of “power” but the coefficients we compute via
Fourier analysis are not power. They are amplitudes. The term spectrum is often used
synonymously with power spectrum but is not the same as the power spectrum.

In signal processing, the coefficients computed for cosine are called Real and those for
sine, are called Imaginary. Of course, there is nothing imaginary about the coefficients
of sine, they are just as real as the cosine coefficients. It is just one of the many confusing
terms we come across in signal processing.
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Figure 1.24: The coefficients of the harmonics.
For each harmonic index k representing a frequency of k f0, there are two coefficients, one for sine
and the other for cosine. These coefficients can be positive or negative and represent a formula for

creating a Fourier representation of the test wave.

While the spectrum in Fig. 1.24 is in terms of sine and cosine coefficients, you may say
that this is not the way we usually see a spectrum in books. A spectrum ought to have
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just one number for each frequency. So, we combine the sine and cosine coefficients into
two real-world terms, called magnitude and phase.

As harmonic sine and cosine are orthogonal to each other, and have the same frequency,
we can compute their sum by thinking of them as vectors. We can compute this by
doing the root-sum-square (RSS) of the two coefficients. This RSS term is called the
magnitude. Now we plot the modified spectrum using magnitude on the y-axis instead
of amplitudes of the sine and cosine. The magnitude is one number for each frequency
and is computed by this expression.

Magnitude: ck =
Ç

a2
k + b2

k (1.23)

While the amplitude can indeed be negative, the magnitude is always positive. The
effect of the sign of the amplitude is now seen in a term called phase, which we calculate
by

Phase: φk = tan−1 bk

ak
(1.24)

This phase term is different from the previous two types of phases we mentioned, as
this is a combination of the phase of the sine and the cosine harmonic of a particular
frequency. The range of arctan is from −π/2 to +π/2, so it must be unwrapped to
compute the full phase. What it represents is the relative phase shift between the cosine
and the sine harmonic. The phase spectrum is usually quite noisy due to computational
effects.

We show these two quantities on a pair of plots, one for the magnitude and the other
for this new phase term, both plotted as a function of the harmonic frequencies or the
index, as shown in Fig. 1.25. The first one is called the magnitude spectrum and the
second is called the phase spectrum.
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Figure 1.25: The magnitude and phase spectrum.
In (a), we see the RSS of both the sine and cosine coefficients, representing the magnitude of that

harmonic frequency. In (b), we plot the combined phase for each frequency. The magnitude on the
right is usually quite instructive but phase is hard to comprehend as it changes quickly from one

frequency to the next.
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Hence, a spectrum can be plotted in two ways: as a pair of plots of the coefficients of the
sine and the cosine harmonics, or, as the magnitude and phase. (In Fig. 1.24, we have
plotted both the real and imaginary coefficients on just on one figure.) The spectrum
based on the real(cosine) and imaginary(sine) coefficients, changes depending on the
starting point of the analysis. Whereas in the second form, the plot of magnitude and
the phase are not a function of the starting point. Hence practicing engineers prefer the
second form.

The magnitude spectrum, computed from Eq. (1.23) is the preferred form in industry. Its
companion, the phase spectrum usually does not offer information we can use quickly,
and often goes ignored. Confusingly, most people make no distinction when talking
about amplitude or magnitude, and often these two terms are used interchangeably.

The power spectrum

The process of doing Fourier analysis consists of computing the amplitude of each har-
monic and then converting it to the magnitude and phase spectrum. Fig. 1.26 shows
a power spectrum with the y-axis given in dBs. To convert a magnitude spectrum to a
power spectrum, we use Parseval’s theorem. This tells us that the total power in a signal
is the sum of the powers in each harmonic. The power of each harmonic is defined as
the square of its magnitude. Hence to represent power, you square each magnitude
value and then compute its dB value by 10 · log10(ck)2. Alternatively, you can compute
the base 10 log of the coefficient and then multiply it by 20.

Power in the kth harmonic= 20 log(ck) (1.25)

The power spectrum is often normalized to maximum power, such as bin 3 in Fig. 1.26.
(The bin is a form of identifier of the harmonic and is equivalent to the harmonic index
k.) The level of each component is the dB equivalent of its ratio to the maximum power.
All component levels relative to the maximum power, are said to be a certain number of
dBs below the maximum. The maximum level is zero dB, with all other values shown
as negative. These values are also called power spectral density (PSD) because they
are a form of density of the power across a bandwidth.

Looking at the FSC, note that there are just K (the largest k) number of such coefficients,
one for each of the harmonics. The spectrum from the FSC is thus considered discrete.
In the time domain the signal is continuous, however, in the frequency domain, the
one-sided spectrum developed from the FSC is discrete. It has only K terms. Since the
index k is positive, the plot starts at 0 and hence, is called, a one-sided spectrum.

This is an important property of the Fourier series. A one-sided spectrum consists only
of a finite number of components, each an independent value. The x-axis is given either
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Figure 1.26: A traditional Power spectrum created from the Fourier coefficients.

by the index k, but more commonly, by the actual frequency ranging from 0, f0, 2 f0,
3 f0,. . . , etc.

Fourier analysis applies only to periodic waves. And if that is all we could do with
Fourier analysis, then it would not have a lot of use. For real signals we can never tell
what the period is nor where it starts. Usually no periodicity can be seen. In fact, a
real signal may not be periodic at all. In this case, further developments of the theory
allow us to extend the “period” to infinity so we just pick any section of a signal or even
the whole signal and call it “The Period” representing the whole signal. This idea is the
basis of the Fourier transform that we will discuss in Chapter 4.

In this chapter we discussed the Fourier series representation of an arbitrary periodic
wave in terms of weighted harmonic sine and cosine waves. In the next chapter, we
will look at how we can do the same using the confusing and scary-looking complex
exponentials.

Summary of Chapter 1

In this chapter, we introduced the concept of using sinusoids to represent an arbitrary
periodic wave. We also introduced the concept of the fundamental frequency and its
harmonics. The Fourier series representation consists of finding unique weightings
of these harmonics to represent a particular periodic wave. These weights are called
the Fourier series coefficients (FSC). When plotted as a function of frequency, these
coefficients represent the spectrum of the signal. The spectrum calculated using FSC is
discrete although the signal is continuous in time.

Terms used in this chapter:

• Fundamental frequency - The smallest frequency of the signal to be represented
by Fourier series.

• Harmonic frequencies - All integer multiples of the fundamental frequency.
• Sinusoids - Sine or cosine wave.
• Harmonic coefficients - The amplitude of a harmonic.
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• Real and imaginary - Cosine is said to exist in the real plane and sine in the
imaginary plane.

• Magnitude - The RSS value of the amplitudes of the sine and cosine of a particular
harmonic. It is always positive.

• Phase - The fixed phase shift value of a wave at t = 0, often specified in radians.
• One-sided spectrum - A spectrum for positive harmonic index, k = 0, 1, 2, etc.
• Power spectrum - Showing distribution of power rather than amplitude.

1. The most common trigonometric form of the Fourier series is given by

f (t) = a0 +
∞
∑

k=1

ak cos(2π fk t) +
∞
∑

k=1

bk sin(2π fk t)

2. The coefficients of the Fourier series are easily computed by

a0 =
1
T0

∫ T0

0

f (t) dt

bk =
2
T0

∫ T0

0

f (t) sin(kω0 t) dt

ak =
2
T0

∫ T0

0

f (t) cos(kω0 t) dt

3. Many periodic signals can be represented by the weighted sum of harmonics
sinusoids. The representation is an estimation and may not be an exact replication.

4. Harmonic sinusoids are orthogonal to each other; hence, the integral of their
products (or cross product) is zero.

5. The linearity property of the Fourier series implies that a change of the coefficients
of one harmonic does not affect the coefficients of the other harmonics.

6. A time or phase shift of the signal does not affect the magnitude of the coefficients.
7. To synthesize a signal based on the Fourier series, we pick a fundamental frequency

first. All harmonics are integer multiples of the fundamental.
8. We designate harmonics by the letter k. Hence, for all integer k, all k f0 frequencies

are harmonics of the fundamental frequency f0.
9. Fourier analysis means to find the Fourier coefficients of the Fourier series.

10. The Fourier coefficients are discrete because the harmonics are discrete. Hence
the spectrum of a periodic continuous-time signal is discrete.

11. A spectrum can be a spectrum of amplitude, magnitude or power. These are all
different and used for different purposes.
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Questions

1. Can you state in words the principle behind the Fourier series.
2. What is the first and the third harmonic of a sinusoid of frequency 3 Hz?
3. Can any signal have harmonics?
4. When is one harmonic orthogonal to another? What trigonometric property tells

us that this is true?
5. Three non-harmonic sinusoids are added together. What is the period of the

summed wave?
6. If we add three non-harmonic sinusoids together, is the resulting signal periodic?
7. Is the sum of N harmonics also harmonic to the fundamental?
8. Are harmonics within a harmonic set also harmonic to each other?
9. If we make the amplitude of a signal, a function of time, what effect will that have

on its frequency?
10. A change in phase of a cosine wave means it is still orthogonal to a sine wave of

the same frequency; true or false?
11. If the phase of a harmonic is changed, does it remain harmonic to an another

wave?
12. If the amplitude of a harmonic is changed, does it remain a harmonic to an another

wave?
13. What is the maximum amplitude of N harmonic cosine waves added together.

What is it for sine waves?
14. We need to represent a wave that starts at time t = 0. What type of harmonics

will be in its representation?
15. The summation of odd and even waves can be used to create any waveform we

want, true or not?
16. Is Fourier series representation an accurate representation of a wave? Why not?
17. Can we create a Fourier series representation of any wave?
18. Why do we consider the set of harmonics a basis set? What constitutes a basis set?
19. Sine and cosine waves are a basis set for Fourier analysis. Can you give an example

of another set of basis functions.
20. What quality of sine and cosine makes them suitable as a basis set?
21. Fourier series analysis is considered a linear process. Why?
22. What do the coefficients of a Fourier series represent? What does the a0 coefficient

represent?
23. What are the Fourier series coefficients of this signal? s = A+ B sin(2π f t).
24. We want to compute the FSC of this signal. s = sin(6.5t) − cos(4.75t). What

should we pick as the fundamental frequency so as to accurately represent this
signal.
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25. If the target wave is shifted by a certain phase, what happens to its coefficients?
26. How many coefficients would you need to describe this wave? x(t) = 2+B sin(4πt+

π/2)− cos(12πt). Find the coefficients of this signal.
27. What is the fundamental period of this Fourier series representation? x(t) =
(1/2)(sin(4πt)+ (1/3) sin(12πt) + (1/5) sin(20πt)+ (1/7) sin(28πt). What are
the coefficients of the first four cosine and sine harmonics?

28. Given these equations, what are the Fourier series coefficients, a0, a1, a2 for each
case.
(a) y =

1
2
+

3
4

sin(πx)−
3
5

cos(2πx).

(b) y =
3
4

cos(2πx)−
3
5

cos(3πx).

29. What is the difference between amplitude and magnitude?
30. The amplitude of a harmonic varies from -1 v to +1 v. What is its peak amplitude

and its peak-to-peak amplitude? What is its magnitude? What is the power of the
harmonic? What is the value of the power in dB?

31. Examine Fig. 1.13 and give the first four coefficients of the even square wave.
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