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Analog Filters  
Filters play important role in communications. Filters keep the signal from 
splashing energy into adjacent channels and conversely protect the user band from 
unwanted signals and noise from adjacent channels. Filters are also used to shape 
pulses that represent the baseband symbols.  

Here we show a chain of filters that might be used in a multicarrier signal. 
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Figure 1 Uses for filters in a communications chain 

Important filter characteristics 

 

The first filter used Figure 1 is often called the pulse shaping filter because it 
converts discrete signals into analog symbol shapes that can be transmitted. Not all 
shapes can be transmitted efficiently so pulse shaping is very important. After 
pulse shaping, the signal is modulated and up-converted to a carrier frequency. The 
signal is them amplified using a High Power Amplifier. At this point, a filter 
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maybe used to limit the spreading from the HPA. At the receiver there would be a 
frontend receiver tuned to the carrier frequency. It removes noise picked up by 
signal through the channel. A de-multiplexer may be used to separate out the user 
channel, and then a receive or matched filter is used for demodulation. 

Whether these filters are realized as analog or digital depends on the application. 
At rf frequencies, the analog filters are cheaper and lighter and used often. 

Frequency Response and Group Delay 

The purpose of a filter is to block out the undesirable signals and at the same time 
keep the pass-band signal as undistorted as possible. We characterize filters by 
their Frequency response, also called Bode Plots. The frequency response of an 
analog filter T(s) can be described as a ratio of two voltages EL and ES or 
polynomials in s-domain, N(s) and D(s), where s jw=  and where ω  is radians per 
second.  

 

Figure 2  An LC filter  
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Writing the transfer function for the filter in Fig. 6.4.1 
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If we evaluate this expression for various ω  (set s jw= ), we write the frequency 
and the phase response as   
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The order of this filter is given by the highest order of ω , in this case 3. This is a 
lowpass filter of fairly shallow rejection. The transfer function of Equation (0.30) 
has three poles and no zeros. Reference to poles and zeros comes up often in 
filters. Their purpose is to provide a short cut for determining if a filter that has 
been synthesized is realizable or not. The roots of the numerator are called zeros 
and those of the denominator, poles. If these roots fail any of the following rules, 
then filter cannot be built. These rules are: [8] 

1. The poles and zeros must occur in pairs which are complex conjugates of 
each other. 

2. The poles and zeros on the real axis do not have to be in pairs. 
3. Poles must be restricted to the left half of the complex-frequency plane. 

 

 

Figure 3 – Frequency and phase response of a general filter. 

Phase Response 
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A passive filter provides no gain to the signal. In fact, most often there is insertion 
loss and overall power loss in the band of interest. Conversely an active filter is 



one that has an amplification function built into it.  The filter of Figure 3 is a 
passive filter as there is no gain in the pass-band. Its phase response seems to jump 
up and down rapidly, but that’s for graphing convenience since the scale of 
observation is limited to 360 degrees. We see that in the first segment starting at f 
= -1, phase goes from 50 degrees to -180 degrees and then a full 360 degrees in the 
next segment and then again from 180 to -40 degrees, adding these up and 
subtracting 2x360 degrees, we get 90 degrees. Which is exactly the phase 
difference between a sine wave of frequency  -1 Hz and +1 Hz. For this filter, 
which happens to be a Butterworth filter of order 9, the phase is linear in the pass-
band, from -1 Hz to +1 Hz which is a characteristic of Butterworth filters. A great 
deal of importance is attached to the phase response of the filter since any change 
in linearity causes signal distortion. 

Impulse Response 

The Impulse response of a filter is very useful characteristic. Akin to striking a bell 
to hear the quality of its ring, an impulse response similarly pings the filter with an 
impulse. Of course, response to a single impulse won’t immediately tell you how 
the filter will respond to a real signal, it does tell us something useful. Since the 
system response out of a linear filter is itself linear, the response of the filter to a 
signal is just linear additions of the impulse response for each incoming signal 
pulse, scaled by its magnitude. For the unit pulse (a delta function) we can say that 
acting on system H, it produces a response h(n).  
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n  ( ) ( )Hn hδ ⎯⎯→

or in time domain, a pulse produces several outputs. 

 { } { }0 1 2 31,0,0,...0 , , , ,...H h h h h⎯⎯→  

The time-invariant property tells us that 

( ) ( )Hn T h n Tδ − ⎯⎯→ −  

For any delay equal to T, the response is delayed by the same amount. To write the 
sum of n impulses, we get 



  ( ) ( 1) ( 2) ... ( ) ( 1) ( 2) ...Hn n n h n h n h nδ δ δ+ − + − + ⎯⎯→ + − + − +

This result in a weighted sum of  
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Which in a more formal way can be written as the familiar discrete-time 
convolution of the input signal x(n) with the filter tap-weight h(n) to produce the 
output signal (n). 

 ( ) ( ) ( )
m

y n x m h n m= ∑  (0.4) 

 

  

Group Delay of a Filter 

The phase response as shown in Figure 3 of a filter is difficult to make sense 
because of the large excursions over the bandwidth. An alternate metric of interest 
is the Group Delay. Group delay is a time parameter give in units of time delay. 
The phase difference is converted to a time delay over the frequencies in the 
occupied band. The group delay is given as the slope of the phase curve vs. 
frequency. Group delay is used far more as a measure of filter phase response than 
pure phase in degrees.  A plot of delay vs. signal frequency gives an indication of 
how the relative frequencies of the signal are being delayed by the filter. The 
objective is to get as flat a group delay as possible which implies linear behavior.  

The expression for group delay is given by ratio of change in phase over change in 
frequency. Given the phase response of the filter, it is easy to calculate the group 
delay by this relationship.  

 delayT φ φ
ω ω
∂ ∇

= − = −
∂ ∇

 (0.5) 
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From the phase response in Figure 3, we can incrementally compute the slope to 
get the group delay response. Despite the fact that the phase response looks like 
straight lines, the group delay plot is more illuminating in showing the important 
behavior. Group delay is used to compare filters, where such comparison of phase 
is a difficult task. The effect of group delay on the signal can be explained by this 
metaphor. Imagine a train where the front is moving faster than the back. The train 
must stretch and the result is distortion. Similarly group delay tells us how much 
distortion the filter has introduced in the signal in time domain. If the group delay 
is much longer than a symbol time, then we have a problem. However if the 
maximum group delay difference is much smaller than the symbol time (at least 
one order of magnitude less) the distortion would be small. Wideband signals are 
much more prone to group delay distortion than narrowband. This is simply 
because a narrowband signal experiences much less difference in delays between 
its maximum and minimum frequency. The group delay shows up a function of the 
linearity of the filter. The filters that offer a linear phase response are generally 
characterized as linear filters.  

Ultimately, we use group delay as a measure of the non-linearity of the system and 
its potential to distort the signal. There would always be delay through a system, so 
the absolute value is not very important, just the range of delay over the desired 
bandwidth.  

 

 



 

Figure 4 – Frequency and phase response of a filter. 
Figure 4 takes the phase of filter in Figure 3 and plots it as group delay. This 
depiction of group delay has appeal. A perfectly flat group delay tells us that all 
frequencies in the signal arrive with delta change in time with some given delay 
through the path. (The front of the train and the back of the train arrive at the 
station at the same time.) In the center the group delay is somewhat flat. We see 
the group delay increasing rapidly at the edges of the pass-band. This says that the 
distortion would be larger for the frequencies at the edge.  The concept of group 
delay can be applied to any device that has a frequency response. Nearly all 
devices even those that are frequency independent exhibit some group delay. In 
most cases, the system group delay as opposed to the filter group delay would be 
measured and compared against some maximum acceptable design specification. 

Definition of Bandwidth  

Akin to water flowing through a pipe, symbol rate has similar relationship to 
bandwidth. Larger bandwidth allows larger data rates. But “Bandwidth” is a term 
fraught with confusion. It is clear what we mean by data rate but what is 
bandwidth? There are several different ways of defining bandwidth and all lead to 
different answers. Whenever bandwidth is specified, it is sensible to ask what the 
specification criteria is. 

 
Filters – Analog, digital and adaptive filtering  Page 7 
 



First thing we need to know is that Bandwidth contains only the positive 
frequencies of a signal. All frequency specifications start measuring at 0 Hz. This 
is why lowpass bandwidth is one-half of bandpass, although absolutely nothing 
about the signal changes as it goes from low-pass to band-pass. It has just shifted 
to a higher center frequency and all components of the signal have moved into the 
positive frequency range.  

Here are some ways in which bandwidth is specified.[Couch] 

1. Absolute Bandwidth – Specifications of bandwidths by regulatory bodies are 
absolute bandwidths. For example if the bandwidth is given form 12.7 to 
13.7 GHz, then this is an absolute bandwidth.  

2. 3-dB bandwidth – If the edge frequency is f1, then it is assumed that the 
magnitude at this point has attenuated to exactly one-half the peak value. 
However, not all filters have a well-defined 3-dB bandwidth. Chebychev 
filters that have a ripple in the pass-band are one such example. 

 

 

Figure 5 – Definition of Bandwidth 
Absolute bandwidth:  28 Hz  

3 dB bandwidth: 23.50 
98% power bandwidth: 29.50 Hz  
99% power bandwidth: 42.75 Hz.  

The null-to-null bandwidth is 38.5 Hz 
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3. 98% and 99% power bandwidths - This is the bandwidth which contains 
respective amount of total power of the signal.  

4. Null-to-null bandwidth – This bandwidth definition is used more 
commonly in antenna design and specifies the range (f1 – f2), where both 
edges fall in some predefined level nulls.  

5. Occupied Bandwidth – This is usually a regulatory specification in terms 
of a power and attenuation mask, the purpose of which is to control the 
energy being transmitted out of the band. Figure 6  shows a FCC specified 
mask for satellite communications. The frequency is given as a percent of 
the total bandwidth.  

6. Equivalent Noise Bandwidth – If all power of the signal were to be 
confined to a rectangular ideal shape, we get a bandwidth measure that is 
called the Equivalent Noise Bandwidth. The alternate way to specify this is 
by the term Time-Bandwidth product. For a root-raised cosine, the noise 
bandwidth is 0.5 and for a Butterworth filter it is approximately 0.53. 
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Figure 6 FCC Emissions Mask  
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Analog filter types 

There are four main analog filters and all are used extensively in designs 
,particularly at RF frequencies. Analog filters are usually compact, and often 
inexpensive. The primary principle of an analog filter is that it is based on a RLC 
circuit, and is inherently a non-linear device but can be made to behave linearly in 
a particular range. The filter types are: Butterworth, Chebychev, Elliptic, and 
Bessel. There are of course hybrids that combine best parts of each but they are 
usually application specific. 

Butterworth 

Most commonly used analog filter is the Butterworth Filter. It has a set of transfer 
functions that result in the flattest possible behavior in the pass-band. Butterworth 
filters are all-pole filters and fall on a circle (limited to the left half) of unit radius 
so in the pass-band they have nearly linear phase response as in Figure 7. The 
equation for a Butterworth filter of order 3 is given in Equation (0.33) The 
frequency response of these filters is consistent as the order goes up [4]. The 
bandwidth is defined as that point where the attenuation equals 3 dB. The general 
equation of a Butterworth filter is given by 

 
2

10log 1
n

dB
c

A ω
ω

⎡ ⎤⎛ ⎞
⎢ ⎥= + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (0.6) 

Where cω the 3 dB cutoff frequency and n is is the order of the filter. A general 
analog is defined by 

  (0.7) 2 )10log(1 )n
dBA = + Ω

Where the  is given by the  Table 6.3. 1. And given byΩ x cω ω is the ratio of the 
frequency of interest and the 3 dB cut-of frequency. 

 

Table 1 

 
Filters – Analog, digital and adaptive filtering  Page 10 
 



 

Filter Type Ω  

Low-pass x cω ω  

High-pass c xω ω  

Bandpass 3x dBW BW −

 

 

 

 
B

Band-reject 3 dB xBW BW−

 

 

Example: Calculate and plot the frequency response of a Butterworth filter of order 
5 , 7 and 9. 

Using equation (0.34), we get the following graph. 
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Figure 7   Butterworth Filter Frequency Response for order 5, 7 and 9. 
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Butterworth filters are used widely in frontend of low power receivers. There is 
very little distortion in the pass-band and they are considered most benign of all 
analog filters. However the out of band attenuation is not as good as that offered by 
other filters which is often a matter of tradeoff between pass-band behavior and the 
effect on and from adjacent channels.  
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Chebychev Filters 

There are two types of Chebychev filters. Both types have a ripple either in the 
pass-band or the stop-band. Type I filter, the one used most often has a ripple in 
the pass-band which is of course not a desired behavior but it rolls-off much faster 
than all the others. The ripple of course can be made very small by design.  Type II 
does not have a ripple in the pass-band but does not roll off as rapidly as type I. 
Both are used depending on which band is of concern The Chebychev (There are 
numerous way to spell this name, for a story about  the correct spelling see book 
[6] by Paul Davies.) filters offer a steeper stop-band response but at the expense of 
introducing the ripple.  

 
 

 

 

 

 

 

 

Figure 8 Chebychev Filter Types 
 

Although the magnitude response of the Chebychev is very attractive, its group 
delay behavior is not so. In Figure 9 we present the group delay of this filter for 
several filter orders. Beyond order 7, the group delay becomes too large for 
practical use. 

Elliptic 

Both Butterworth and Chebychev are all-pole filters and as such their rejection 
does not roll off rapidly and can only be zero at the far end of the stop band. 



Elliptic filters on the other hand have zeros in the stopband and for this reason this 
filter has the fastest roll-off of all analog filters. As Chebychev has ripple in either 
the passband or stopband, the elliptic has ripple in both. It is of course related to 
both Chebychev and Butterworth filters. Setting the ripple to zero in stopband 
causes Elliptic filter to become a Chebychev and suppression of ripple in both 
bands causes it to degenerate to a Butterworth filter. This filter has equiripple 
behavior in both the passband and the stopband. The ripple can be changed in both 
bands independently by design. A form of elliptic filter that limits the ripple in the 
stopband is called quasi-elliptic filter. The improved performance from doing that 
comes with sidelobes but they are usually quite far down.  For applications where 
large and fast rejection is required, Elliptic filters stand out. They are used in 
satellite communications for both as input multiplexer and output multiplexers 
after HPA amplification. In Figure 9, we see the comparison of the Elliptic and see 
how much better is its stopband response.  

 

(a) Bessell (b) Elliptic

(c) Chebychev Type I (d) Chebychev Type II
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Figure 9  The frequency response of (a) Bessell, (b) Elliptic, (c) Chebychev 
Type I and (d) Chebychev Type II analog filters. 

 

Figure 10 Inband response comparison 

Digital Filters 
Digital filters can provide the same frequency characteristics as analog filters and 
can do even better in phase response. They are a design created from shift-register 
networks and can be built with memory and Arithmetic units. They offer many 
advantages over analog filters: [5] 

1. Most digital structures offer unconditional stability. 
2. The digital shift registers are easy to control and coefficient values can be 

stored and easily changed for applications such as adaptive filtering. 
3. They can be manufactured from ASICs. 
4. Digital filters can operate over wide frequencies and dynamic range. 
5. We can design perfectly linear phase response. 
6. Digital filters don’t suffer from age related degradations. 

Finite Impulse response (FIR) Filters 

Digital filters can be classified in two forms: FIR and IIR, depending on the 
length of their impulse response, finite or infinite. Both of these forms are 
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created with delay/memory/shift registers. The FIR has an impulse response 
that extends over a finite number of terms only such that we can write its 
impulse response as 

 { }0 1 Mh h h  

Where M is the order of the filter. The length of the impulse response is equal 
to M+1. In Figure 11  is shown one such FIR filter. The signal is tapped off 
after each delay element and multiplied by a constant, called filter coefficient, 
filter weight or tap-weight. All scaled components of the signal are added 
together to produce the output.  
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Figure 11  A Moving Average FIR filter 
 

In Figure 11 we see a very simple FIR filter. All tap-weights are equal to 0.25 
and this is an M = 4 order filter.  We determine the output by 

1 1 1 1( ) ( ) ( 1) ( 2) ( 3)
4 4 4 4

y n x x x x= + − + − + − . 

 If the first inputs were 1, 2, 6, 4, 3, 2, our first few outputs would be  
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( )
( )
( )
( )
( )
( )

1 0.25 0 0.25 0 0.25 0 0.25 0.2
2 0.25 1 0.25 0 0.25 0 0.25 0.75
6 0.25 2 0.25 1 0.25 0 0.25 0.983
4 0.25 6 0.25 2 0.25 1 0.25 1.983
3 0.25 4 0.25 6 0.25 2 0.25
2 0.25 3 0.25 4 0.25 6 0.25

× + × + × + × =

× + × + × + × =

× + × + × + × =

× + × + × + × =

× + × + × + × =

× + × + × + × =

 

Let’s determine the impulse response of this filter using the same procedure as 
above but with a signal equal to 1,0,0,0,0. What we get for first five times is 0.25, 
0.25, 0.25, 0.25. This is the impulse response of this FIR filter and it is exactly 
equal to the filter tap-weights.  

( )
( )
( )
( )

1 0.25 0 0.25 0 0.25 0 0.25 0.25
0 0.25 1 0.25 0 0.25 0 0.25 0.25
0 0.25 0 0.25 1 0.25 0 0.25 0.25
0 0.25 0 0.25 0 0.25 1 0.25 0.25

× + × + × + × =

× + × + × + × =

× + × + × + × =

× + × + × + × =

 

This fact is true for all FIR filters, no matter how many tap-weight it has long as it 
has this forward-feeding structure. If we trace the path of the impulse through the 
FIR filters, its impulse response will always be equal to its tap-weights or 
coefficients. The tap-weights imply a frequency response. Changing the tap-
weights means changing the filter response. If we know what type of frequency 
response we want, we can design it by finding coefficients that provide it. This is 
the process of the design of a FIR filter; going from a given frequency response to 
determining coefficients. 

To generalize the expression for an arbitrary FIR filter of order M, we can write 
the equation of a FIR filter as  

 
0

( ) ( ) ( )
M

k
y n h k x n k

=

= −∑  (0.8) 

 
Filters – Analog, digital and adaptive filtering  Page 16 
 



The filter has an easy to understand structure. This type of design is called a feed-
forward structure. It has the wonderful quality of always being stable as it has no 
denominator and can never be singular. 

 

1z−

0h
∑

1z−

1z−

1h

2h

( )x n

( 1)x n −

( 2)x n −

( )y n

Mh( )x n M−

Figure 12 Generic FIR filter of M+1 taps 
 

Where  M+1 equals the numbers of taps. This is the basic structure of a FIR filter, 
also called transversal, or tap-delay line filter. That’s all there is to a FIR filter. The 
output of the filter, Equation (0.35) is a convolution of the coefficients and the 
incoming signal values. We only show a scalar version in this figure but of course, 
the coefficients and the signal can both be complex.   

FIR filters find their uses in many fields other than communications. One example 
is the technical analysis done on stock prices. Moving average, exponential moving 
average, MACD, RSI, are all example of FIR filters applied to a sequence of data 
either in order to shape it, or to extract useful information such as trends or 
intelligent information free of instantaneous noise. 

Condition for Phase Linearity 
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One of the advantageous qualities of FIR filters is that they exhibit linear phase. A 
kth order FIR has a frequency response as given by (0.35). We say it has a linear 
phase if the phase as a function of the frequency equals the phase change through 
the filter at the center tap plus a constant. 
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2
 

( ) ( )
( 1) / 2 /

h p
h M and p
θ ω ω

π
= − +

= − = ±
 (0.9) 

Group delay which is a derivative of the phase is given as 

 ( ( )) ( 1) 2gdT d d Mθ ω ω= − = −  (0.10) 

That says that group delay is a constant and a function of the number of taps. The 
other condition that is implied is that the impulse response of the filter must be 
symmetric, otherwise equation (0.37) cannot hold: 

 ( ) ( 1 )h n h M n= ± − −  (0.11) 

In describing adaptive filters, we will show that although we can design the taps to 
be symmetrical, in order to equalize a channel, we need to come up with tap-
weights that may not be symmetrical because of the non-linear nature of the 
incoming signal. The property of being able to change the impulse response by 
changing the tap-weights is remarkably powerful and versatile. 

Infinite Impulse Response (IIR) Filter 

The difference between a FIR filter and an IIR filter is that IIR filter can produce 
an  infinite response. We can write its impulse response as 

 
0

( ) ( ) ( )
k

y n h k x n k
∞

=

= −∑  (0.12) 

Of course, the infinite number of terms is a problem. In a sub-class of IIR filters, 
the requirements of infinite number of taps is gotten around by selecting tap-
weights that are related to each other, so that the summation can be estimated as 
the sum of an infinite series. [3]  



Compare the FIR structure with only forward going taps to the structure of an IIR 
filter. This structure adds an additional section (on the right in Figure 13) that takes 
the past values of the output signal d(n) and feeds them back into computing the 
current value. The second section on the right is called feed-backward. [See Lyons 
1 for more on FIR, IIR]. 

 

1z−

0b
∑

1z−
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1b
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( )x n

( 1)x n −

( 2)x n −

( 3)x n −

( )y n∑

1z−

1z−

1a−

2a−

( 1)y n −

( 1)y n −

( )N z 1 ( )D z

Figure 13 An IIR filter with both feedforward and feedback parts. 
 

This is one such IIR filter.  It has two sections, the right one is called non-recursive 
and the left is recursive section. The other names for these sections are: feed-
forward and feed-backward. The response of this filter is   

1 (( ) ( )
( ) ( )

N zH z N z )
D z D z

= =  

The output y(n) is sum of the terms from Figure 13. 
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⎤⎦

1 2 3 4

1 2

( )
( ) ( 1) ( 2) ( 3)
( 1) ( 2)

y n feed forward output feed backward output
b x n b x n b x n b x n
a y n a y n

= − + −⎡ ⎤ ⎡⎣ ⎦ ⎣
= + − + − + −⎡ ⎤⎣ ⎦
+ − + −⎡ ⎤⎣ ⎦

 

Where the terms with the ‘b’ coefficients are feeding forward, and those in the 
second line with ‘a” coefficients are feeding backward, hence the names. The feed-
backward terms require the previous values of the signal created by the feed-
forward section. Note that the values of the coefficients in the feed-backward 
section expression are negative of the tap-weights..  

The channel response can be written as  

 1 2 3 4

1 2

( ) ( 1) ( 2) ( 3)
( )

( 1) ( 2)
b x n b x n b x n b x n

H z
a y n a y n

+ − + − + −⎡ ⎤⎣ ⎦=
− + −⎡ ⎤⎣ ⎦

 (0.13) 

This forward and backward process makes this type of filter complex. It can 
become unstable and has the problem of propagating errors.  But this structure 
allows us to model analog filters and specialized digital filters such as those used 
in Decision Feedback Equalization. 

Adaptive Filtering 

What is Adaptive Filtering 

The general name for adaptive filtering is Equalization. In the broad sense, the 
word “equalization” refers to any signal processing or filtering technique that is 
designed to eliminate or reduce channel distortions. How well the channel effects 
can be equalized depends on how well we know the channel transfer function. 
Equalization has wide applications in communications from echo cancelling in 
telephone lines, multipath mitigation in cell phones, beam forming and signal 
recognition.  

The simplest type is equalizer is one called a graphic equalizer, where the 
bandwidth of interest is divided in a certain number of bands with sliding controls. 



Each band has bandpass filter and the slider adjusts power gain settings in that 
band. Equalization in this case is performed by adjusting power in selected bands. 
A  general type of equalizer, called parametric equalizer can adjust the signal with 
all three of its parameters; gain, frequency and phase. We can make these 
adjustments in frequency domain or time. Most of the equalization does rely on 
filtering, performed most commonly by FIR filters, either a transversal or a lattice 
type with adjustable tap-weights. The equalization process is based on the 
knowledge that the impulse response of an FIR filter is same as its tap-weights. So 
once we know or have estimated the channel impulse response, we apply the 
inverse of this to the filter, such that by changing the tap-weights of the filter, 
signal is distorted in the opposite direction of the channel impulse response hence 
equalizing it. The filter and the algorithm that is used to adjust the tap-weights is 
called the equalizer. The equalization can be done with knowledge of the channel 
or blind without knowledge of the channel. 

There are many variations on this basic theme, some equalizers operate 
continuously, some only part of the time. The equalizer filters can be described as 
to whether they are linear devices that contain only feed-forward elements, or 
whether they are nonlinear devices that contain both feed-forward and feedback 
elements (Decision Feedback Equalizers). They can be grouped according to the 
automatic nature of their operation, which may be either preset or adaptive. They 
can also be grouped according to the filter’s resolution or update rate. The 
equalization can take place on the symbol or on a sequence.  

To understand equalization and the various ways it can be accomplished we start 
first with the channel impulse response. Assume that the transmitted pulse had a 
root-raised cosine shape. We want the received signal response to be the root-
raised cosine so the overall system transfer function  is equal to the raised-
cosine filter, designated . Thus, we write it as the product in frequency 
domain of the response of the transmitter and the receiver. 

( )H f
( )RCH f

 ( ) ( ) ( )RC t rH f H f H f=  (1.1) 
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In this way and  , the response of the transmitter and receiver 
respectively, each have frequency transfer functions that are the square root of the 

( )tH f ( )rH f



raised cosine. Then, the equalizer transfer function needed to compensate for 
channel distortion is simply the inverse of the channel transfer function: 

 ( )1 1( )
( ) ( )

cj f
e

RC RC

H f e
H f H f

θ−= =  (1.2) 

Sometimes a system frequency transfer function manifesting ISI at the sampling 
points is purposely chosen (e.g., a Gaussian filter transfer function). The 
motivation for such a transfer function is to improve bandwidth efficiency, 
compared with using a raised-cosine filter. When such a design choice is made, the 
role of the equalizing filter is not only to compensate for the channel-induced ISI, 
but also to compensate for the ISI brought about by the transmitter and receiver 
filters [7]. 

The basic principle is simple. Apply a filter E  that mitigates the expected ISI.  We 
can do this in one of two ways: 1. Design E(f) so that all ISI is eliminated, or 2. 
Design it such that we minimize the mean squared error. The equalizer designed to 
eliminate all ISI is called a zero-forcing Equalizer and one designed to minimize 
the squared error (or the variance)  is called Minimum Squared Error Equalizer. 

x y x
 

Figure 14   Basic idea of an equalizer 

Linear Estimation Principles 

 
Filters – Analog, digital and adaptive filtering  Page 22 
 

The incoming signal to an equalizer is a random process. There are two 
possibilities when estimating a random variable, 1. We have no observed samples 
of the process and 2. We have a set of limited numbers of samples.  In the first 
case, an example helps intuitive understanding. You need to estimate the number 
of number of hours it will take to complete your homework The best estimate 
under these conditions would be to say that it will you take about the same amount 
of time as the average of all your past times (past observations). So if it takes you 
on the average 3 hours to do your home work, the best current estimate would be 



the same. Although this is intuitive, we really made this decision by applying the 
mean-square error criterion which says that the least-mean-squares estimate of a 
random variable x given only its average and variance from past observations, is 
equal to its past average or the best estimate is ˆ =x x . The resulting minimum error 
is 2E 2σ= xe . For this example, selection of the past average as the estimate 
minimizes the error, however that error is still large and equal to the variance of 
this process. So if it was taking you on the average 3 hours, but the variance was 1 
hour, then on the average, you could be wrong by that amount. When we do have 
observations available, the problem becomes that of estimate of the function that 
relates the input to the output with the least error. The process of equalization tries 
to achieve this objective. 

In most books, two different sets of terminology are used to differentiate between 
linear estimation and adaptive estimation. Here we will use only one set of 
terminology for both types of processes. We define terminology we will use in this 
section: 

  

2

2

( ) ransmitted unknown symbol
Variance of the input signal

( ) Additive noise
Variance of noise

y(i) Received distorted symbol
ŷ(i) Equilizer's estimate of ( )
( ) Error between estimate and actual s

σ

σ

x

n

x i T

n i

x i
e i ymbol
ˆ( ) Final decision about ( )
( ) weight of i  tap 

L Number of taps, 2N + 1
Assume all are column vectors unless shown with transpose symbol, T.

− th

x i x i
k n Tap
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nwΛ

( )x i

ˆ( )y i( )x i
( )y i

ˆ( )y i

ˆ( )x i
 

Figure 15 - Equalization based on a transversal filter 
 

In figure 15, we show the general process for equalization. A symbol x(i) is 
transmitted passing through an unknown channel. We call the observed or the 
received signal, y(i). Keep in mind that y(i) may contain parts of past symbols, 
such as the simple transfer relationship shown in Figure 16 where the received 
signal y(i) is the sum of two transmitted symbols and as such contains ISI. The 
signal y(i) goes through the equalizer which filters it according to its taps weights. 
The filtered version, also the estimation called x̂  is compared with the transmitted 
symbol by the algorithm. Based on the difference, the algorithm directs the filter to 
adjust the tap-weights and continue in this loop until the error is acceptably small. 

One of the big questions which we will answer later on is that in real systems we 
do not know the channel response as neatly as shown in Figure 16. The dotted line 
in Figure 16 from the transmitter to the receiver is not there.  

 

X

0.5

( )x i
1z−

∑ ∑

( )n i

( ) 0.5 ( 1)x i x i+ −

( ) ( ) 0.5 ( 1) ( )y i x i x i n i= + − +
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Figure 16 - A hypothetical channel with additive noise 
 

In Figure 16, we see an example of an ISI channel. Each observed instance of y is 
given by  

 ( ) ( ) 0.5 ( 1) ( )= + − +y i x i x i n i  (1.3) 

The received symbol y(i) consists of contribution from more than one transmitted 
symbol ( ( ), ( 1)−x i x i ), hence this channel introduces ISI as well as noise. The task of 
the equalizer is to take this signal and filter it in such a way that the filtered symbol 
is as close to the transmitted symbol as possible. The equalizer performs the linear 
mapping as stated in Eq. (1.4). We define the transfer function of the equalizer, K 
as a linear function of tap-weights of the filter. The equalizer takes the inputs and 
multiplies them by the vector (a row vector) of tap-weights (only one tap is shown 
in Figure 17) and produces an output which is the estimated symbol. 

 ˆ = Tx K y  (1.4) 

x ˆ Kx y=y

0k
1z−

 

Figure 17 - The input and output of an equalizer 
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In equalization process that is continuous, there are two separate phases, 1. The 
training phase, and 2. The tracking phase. The training sequence as shown in 
Figure 16 provides the missing transmitted data, at least for a short while. This is 
done via a preset sequence that is appended to the start of the transmitted data. The 
sequence used is often chosen to be a noise-like, and “rich” in spectral content, 
which is needed to estimate the channel frequency response. Alternately the 
training can also consist of sending a single narrow pulse, approximating an ideal 
impulse and thereby learning the impulse response of the channel. In practice, a 



pseudonoise (PN) signal is preferred over a single pulse for the training sequence 
because the PN signal has larger average power and hence larger SNR for the same 
peak transmitted power.  

4k 3k 2k 0k

( 1)y i −( 4)y i − ( 2)y i −( 3)y i − ( )y i

ˆ ( )x i

1k

 

Figure 18  Feedforward filter structure used as an equalizer  
 

The transversal filter, depicted in Figure 18, is the most popular form of an easily 
adjustable equalizing filter consisting of a delay line with T-second taps (where T 
is the symbol duration). In such an equalizer, the current and past values of the 
received signal are linearly weighted with equalizer coefficients or tap weights {
} and are then summed to produce the output. Note that nk  are scalar values but 
change as a set for each sample. The main contribution is from a central tap, with 
the other taps contributing echoes of the main signal at symbol intervals on either 
side of the main signal. If it were possible for the filter to have an infinite number 
of taps, then the tap weights could be chosen to force the system impulse response 
to zero at all but one of the sampling times, thus making  correspond exactly 
to the inverse of the channel transfer function in Equation  (1.2) Even though an 
infinite length filter is not realizable, one can still specify practical filters that 
approximate the ideal case. 

nk

( )eH f

Theory behind equalization 

Minimization Criteria 

 

Referring to Figure 18, we have two random variables x, and y of zero-mean. We 
assume that they are Wide-Sense Stationary, this assumption allows us to use the 
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ensemble covariance (of the training sequence) as the total channel response for 
the duration of the communication. It is obvious that the random variables x and y 
are correlated in some way. This correlation of course is necessary otherwise no 
estimation is possible. Signal y enters the equalizing transversal filter of tap-weight 
vector K, where K is column vector of p taps. We are interested in estimating the 
signal x by equalizing the channel output y. That equalizer estimate is x̂  and is the 
equalized version of y. We can write the relationship between y and x̂  as a linear 
relationship 

 

0

1

1

ˆ(0)
ˆ(1)

ˆ( 1)

T

T

T
p

k yx
k yx

k yx p −

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (1.5) 

Alternately we can write this in vector form as 

 ˆ =x ky  (1.6) 

The input data y is a vector of p values since each estimated x̂  is a sum of p values 
of y. Since each ki is a column vector by assumption, we transpose it in Equation 
(1.5). For example, the first value of ˆ(0), 0=x for i  will be calculated as 

 1 2

1 2 0

( )
( ( 1))

ˆ(0)

(0)
( ) ( ( 1)) (0)

− −

− −

−⎡ ⎤
⎢ ⎥− −⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

= − + − − +

p p o

p p

y i p
y i p

x k k k

y
k y p k y p k y

 

The error between the actual and the equalized signal can be written as  

 2ˆError x x≈ −  (1.7) 
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To design an optimum equalizer, we reduce this error as small as possible. For this 
we use a criterion called Minimum Mean Squares Error (MMSE)[15]. This 
criterion is the one most often used in the design of equalizer filters. Minimizing 
MSE requires no more than second degree statistics such as covariance and leads 



to easy to implement designs. Sometimes the terminology Least Mean Squares 
Error (LMSE) is also used when under certain conditions the minimum cannot be 
guaranteed. We will square both sides of (1.7)  substituting Equation (1.6) and 
since x is a random variable, we take expectations of both sides to specify the 
mean error. 

 
22( ) ( ) T

iE e i E x i k y= −  (1.8) 

Expanding the right hand side,  

 
22 2E ( ) E ( ) E 2E ( )T

ie i x i k y x i k y⎡ ⎤ T
i⎡ ⎤= + − ⎣ ⎦⎢ ⎥⎣ ⎦

 (1.9) 

The expected value of 2E ( )x i is the variance of the input signal. The second term 

can be written as  and the third term as . Now let’s call the error, a 

cost operator J  and making substitutions,  

T
i yk R ki i

i

y

,
T
i yxk R

  (1.10) 2
, ,( ) ( ) T T

i x xy i i i yx i i yJ k i R k k R k R kσ − − +

The objective is to minimize where J is a function of the unknown tap-weight 
vector . Differentiate with respect to , and the cost function reduces to 

J
k J ik

  (1.11) ,( ) T
i xy i iJ k R k R= − +

Set equation (1.11) equal to zero to minimize the cost and then rewrite in matrix 
form, to get a very simple equation for determining optimum tap-weights of the 
equalizing filter.  

 O y xyK R R=  (1.12) 
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OK  Represents optimum set of coefficients that result in zero error. This is called 
the MMSE solution. Solution for optimum tap weights requires knowledge o

yR To find estimates, we use training sequences and develop this 

covariance over the length of the sequence. The taps are computed at each sample 
of the training sequence and once the error has been reduced down to zero, can 

f

xy . and R  



either be set for some time or can be changed periodically depending on the 
channel variability. The resulting MSE is given by 
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0  (1.13) 0( ) T
y xyMMSE J K R R K= = −

The output signal is given by, 

 ˆ = ox k y  (1.14) 

Example of a MMSE 3-tap equalizer 

0.5

( )x i ∑ ∑

( )n i

1z−

∑

Error
Calculation Training

Sequence

Change
Weights

1k2k3k

( 1)y i − ( )y i

ˆ( )x i

ie

( 2)y i −( 3)y i −
1z− 1z− 1z−

 

Figure 19 – A transversal feed-forward adaptive filter 
In this example borrowed from [15, Sayed, Adaptive filtering which BTW is the 
best book I have ever seen on this subject,] we use the channel from Figure 19 with 
ISI and noise. For the equalizing filter, we will use a 3-tap feed-forward structure. 
Both the signal and noise are zero-mean signals of variance equal to 1. The signal 
goes through an equalizer with three taps. Given input to the equalizer of 

, we compute the tap-weights that will equalize the 
incoming signal with MMSE. 

( ), ( 1), ( 2), ( 4)− − −x i x i x i x i

The equalizer tap vector at time i = 0 is given by 

 0 1 2
Tk k k k= 3⎡ ⎤⎣ ⎦ 

From Equation (1.12), we write in matrix form 
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xy  (1.15) T
yK R R=

Where  is a 1x3 matrix consisting of just one row of three tap-weights. Next 
compute matrix . Note that individual values in this auto-correlation matrix can 

be written as  . 

TK
yR

( )r k [ ( ) ( )]T
y E y i y i k−

2

2

2

(0) (0) (1) (0) (2)(0)
(1) (0) (1) (2) (1) (0) (1) (1) (2)
(2) (2) (0) (2) (1) (2)

y

y y y y yy
R y y y y E y y y y y

y y y y y y

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎡ ⎤⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Which is equal to  

  (1.16) 

(0) (1) (2)
(1) (0) (1)
(2) (1) (0)

y y y
T
y y y
T T
y y y

r r r
r r r
r r r

⎡ ⎤
⎢ ⎥

= ⎢
⎢ ⎥
⎣ ⎦

⎥

We can compute each of these correlations by noting that the output signal is given 
by this equation 

 ( ) ( ) 0.5 ( 1) ( )y i s i s i n i= + − +  (1.17)  

Multiplying (1.17) by  from the right and taking expectations we get ( )Ty i

 ( ) ( ) ( ) ( )*E ( ) ( ) E (0) ( ) E 0.5 (1) ( ) E ( ) ( )T T T
i i iy i y i s y i s y i n i y i= + + i  (1.18) 

The correlations of the second two terms are zeros because the points are 
uncorrelated, so their cross-correlations are zero. 

 ( ) ( ) ( ) ( )*E ( ) ( ) E (0) ( ) E 0.5 (1) ( ) E ( ) ( )
1 0 0 1

T T T
i i iy i y i s y i s y i n i y i= + +

= + + =
i  (1.19) 

 ( )E ( 1) ( ) E ( 1) ( ) 0.5 ( 1) ( )
0 0.5 1 0 0.5

TTs i y i s i s i s i n i− = − + − +⎡ ⎤⎣ ⎦
= + × + =

 (1.20)   



 ( )E ( 1) ( ) E ( 1) ( ) 0.5 ( 1) ( )
0 0.5 1 0 0.5

TTs i y i s i s i s i n i− = − + − +⎡ ⎤⎣ ⎦
= + × + =

 (1.21) 

Multiply Eq. (1.17) by  and then taking expectation of the product to get the 
correlation values, 

( )T
iy i

 

( )
( ) ( ) (

(0) E ( ) ( )

=E (0) ( ) E 0.5 (1) ( ) E ( ) ( )
1 0.5 0.5 1
2.25

T
y i

T T
i i

r y i y i

s y i s y i n i y i

=

+ +

= + × +
=

)T
i

y )

 (1.22) 

Similarly compute  by multiplying Equation (1.17) with (1) nd (2)yr a r ( 1Ty i −  

to get 

 

( )
( ) ( ) (
( ) ( ) ( )

( )

(1) E ( ) ( 1)

E ( ) ( 1) E 0.5 ( 1) ( 1) E ( ) ( 1)

E (1) (0) E 0.5 (0) (0) E (1) (0)

0 E 0.5 (0)( (0) 0 0.5

T
y i

T T
i i

T T T
i i i

r y i y i

s i y i s i y i n i y i

s y s y n y

s s

= −

= − + − − +

= + +

= + + =

)T
i −

 

 

( )
( ) ( ) (
( ) ( ) ( )

( )

(1) E ( ) ( 1)

E ( ) ( 1) E 0.5 ( 1) ( 1) E ( ) ( 1)

E (1) (0) E 0.5 (0) (0) E (1) (0)

0 E 0.5 (0)( (0) 0 0.5

T
y i

T T
i i

T T T
i i i

r y i y i

s i y i s i y i n i y i

s y s y n y

s s

= −

= − + − − +

= + +

= + + =

)T
i −

 

Compute  similarly, (2)yr
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( )
( ) ( ) (
( ) ( ) (

(2) E ( ) ( 1)

E (2) (1) E 0.5 (1) (1) E (2) (1)

E (2) (1) E 0.5 (2) (1) E (1) (1)
0 0 0 0.0

T
y i

T T
i i

T T
i i

r y i y i

s y s y n y

s y s y n y

= −

= + +

= + +

= + + =

)
)

T
i

T
i

 

Form the matrix from individually computed values of cross-correlations: 

 
2.25 0.5 0
0.5 2.25 0.5
0 0.5 2.25

yR
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (1.23) 

Now we compute which is equal to  xyR

  (1.24) E E ( ) ( ) E ( ) ( 1) E ( ) ( 2)T T T T
xyR xy s i y i s i y i s i y i⎡ ⎤= = − −⎣ ⎦

Now multiply Equation (1.17) by , and taking expectation, we get ( )Tx i

  E ( ) ( ) E ( ) ( ) E0.5 ( 1) ( ) E ( ) ( )
1 0 0

T T Ty i x i x i x i x i x i n i x i= + − +
= + +

T

y
) an ) . 

T

T T

The second and the third terms on the right are zero, because individual symbols 
are uncorrelated with each other and with noise. Similarly with the remaining two 
terms in Equation (1.24) can be obtained by multiplying the Equation (1.17) b
Tx d Tx( 1i +  ( 2i +

  ( ) ( 1) 0 ( ) ( 2) 0T TE y i x i and E y i x i+ = + =

We assume that the channels are WSS and hence the cross correlations are not 
sensitive to the order of the symbols, we can rewrite these two equivalences as 

  
E ( ) ( 1) E ( 1) ( ) (E ( ) ( 1))
E ( ) ( 2) E ( 2) ( ) (E ( ) ( 2))

T T T

T T

y i x i y i x i x i y i
y i x i y i x i x i y i

+ = − = −

+ = − = −

 

Now we have all the data to put together  xyR
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 1 0 0xyR = ⎡ ⎤⎣ ⎦ (1.25) 

Compute the optimum tap-weights by equation (1.15) 

 

1

1
0

2.25 0.5 0
1 0 0 0.5 2.25 0.5

0 0.5 2.25
0.4688 0.1096 0.0244

T
xy yk R R

−

−

⎡ ⎤
⎢ ⎥= = ⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

= −⎡ ⎤⎣ ⎦

 

There we have it, the values of each of the three taps-weights. The error in this 
equalization is equal to  

  2
0 .5312σ= − =x xyMMSE R k

We can write the cost function as a function of the 3 tap-weights which would 
result in a three-dimensional error space. 

Zero-Forcing Solution 

Consider that a single pulse was transmitted over a system designated to have a 
raised-cosine transfer function ( ) ( ) ( )RC t rH f H f H f= .  Also consider that the 
channel induces ISI, so that the received demodulated pulse exhibits distortion, as 
shown in Figure 20, such that the pulse sidelobes do not go through zero at sample 
times adjacent to the mainlobe of the pulse. The distortion can be viewed as 
positive or negative echoes occurring both before and after the mainlobe. To 
achieve the desired raised-cosine transfer function, the equalizing filter should 
have a frequency response He(f ), as shown in Equation (1.2), such that the actual 
channel response when multiplied by He(f ) yields HRC(f ). In other words, we 
would like the equalizing filter to generate a set of canceling echoes using the 
process shown in Figure 20. 
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x y x
 

 

Figure 20 -   Received pulse exhibiting distortion. 
 

Since we are interested in sampling the equalized waveform at only a few 
predetermined sampling times, the design of an equalizing filter can be a 
straightforward task. 

We will use a zero-forcing equalizer to do that. The idea is to force the signal to 
zero at the sample boundary. This method proposed by Lucky [5, 14] does not use 
MMSE as its criteria but instead the minimization of peak distortion. The solution 
also ignores noise and can have problems with amplification of noise. For such an 
equalizer with finite length, the peak distortion is guaranteed to be minimized only 
if the eye pattern is initially open. However, for high-speed transmission and 
channels introducing much ISI, the eye is often closed before equalization [8]. 
Since the zero-forcing equalizer neglects the effect of noise, it is not always the 
best system solution. Most high-speed telephone line modems use an MMSE 
criterion because it is superior to a zero-forcing criterion; it is more robust in the 
presence of noise and large ISI [8]. 
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Example of a Zero-Forcing Three-Tap Equalizer 

Consider that the tap weights of an equalizing transversal filter are to be 
determined by transmitting a single impulse as a training signal. Let the equalizer 
circuit in be made up of just three taps. Given a received distorted set of pulse 
samples {x(k)}, with voltage values 0.0, 0.2, 0.9, 0.3, 0.1, as shown in Figure 20, 
use a zero-forcing solution to find the weights {k0, k1, k2} that reduce the ISI so 
that the equalized pulse samples ˆ( )x i  have the values, {x(-1)= 0, x(0)= 1, x(1)= 0}. 
Using these weights, calculate the ISI values of the equalized pulse at the sample 
times  What is the largest magnitude sample contributing to ISI, and 
what is the sum of all the ISI magnitudes? 

2, 3.k = ± ±

Solution 

For the channel impulse response specified, Equation (1.14) yields 

  (1.26) 
1

0

1

0 (0) ( 1) ( 2)
1 (1) (0) ( 1)
0 (2) (1) (0)

y y y k
y y y k
y y y k

−− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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1

0

1

0.9 0.2 0
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−⎡ ⎤
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Solving these three simultaneous equations results in the following weights: 

1

0

1

0.2140
0.9631
0.3448

k
k
k

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

The values of the equalized pulse samples {x(k)} corresponding to sample times 
 are computed by using the preceding weights in 

Equation (1.26), yielding 
3, 2, 1, 0, 1, 2, 3k = − − −

0.0000, 0.0428, 0.0000, 1.0000, 0.0000,  0.0071, 0.0345 
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The sample of greatest magnitude contributing to ISI equals 0.0428, and the sum of 
all the ISI magnitudes equals 0.0844. It should be clear that this three-tap equalizer 
has forced the sample points on either side of the equalized pulse to be zero. If the 
equalizer is made longer than three taps, more of the equalized sample points can 
be forced to a zero value. 

Whereas the MMSE equalizer removes most of the ISI but limits the amplification 
of noise, ZFE enhances the noise  

MSE Equalization Types 

Symbol-Spaced Equalizers 

Equalizer filters are classified by the rate at which the input signal is sampled. A 
transversal filter with taps spaced T seconds apart, where T is the symbol time, is 
called a symbol-spaced equalizer. The process of sampling the equalizer output at a 
rate 1/T causes aliasing if the signal is not strictly bandlimited to 1/T hertz—that is, 
the signal’s spectral components spaced 1/T hertz apart are folded over and super- 
imposed. The aliased version of the signal may exhibit spectral nulls [8].  

T T T

∑

Error
Calculation Training

Sequence

Change
Weights

4w3w2w1w

1x 2x 3x 4x

ny

ne

 

Figure 21 – Symbol Spaced Equalizer 

Fractionally Spaced Equalizers (FSE) 

 

A fractionally spaced equalizer is very similar to a symbol-spaced linear equalizer. 
The major difference is that a fractionally spaced equalizer receives K input 
samples before it produces one output sample. The signal is oversampled by factor 
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K/T, where T is the symbol and the sample rate. Often K is 2 and the equalizer is 



referred to as T/2 FSE. The output sample rate for FSE is 1/T, while the input 
sample rate is K/T. The weight-updating also occurs at a higher rate.  
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Figure 22 – A K-fractionally Space Equalizer 
 

 the symbol rate helps to mitigate the 
h a 

A filter update rate that is greater than
difficulty of finding spectral nulls when a smaller sampling rate is used. Wit
fractionally spaced equalizer, the filter taps are spaced at 

( )
'

1
TT
r

≤
+

 

seconds apart, where r denotes the excess bandwidth. In other words, the received 
signal bandwidth is 

( )1 r
W

T
+

≤  

The goal is to choose T so that the equalizer transfer function  becomes 
 Note that the signal 

nes, 
l-

spaced equalizers [14]. 

( )eH f

sufficiently broad to accommodate the whole signal spectrum.
at the output of the equalizer is still sampled at a rate 1/T, but since the tap weights 
are spaced T  seconds apart (the equalizer input signal is sampled at a rate 1/T ’), 
the equalization action operates on the received signal before its frequency 
components are aliased. Equalizer simulations over voice-grade telephone li
with T = T/ 2, confirm that such fractionally-spaced equalizers outperform symbo
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Figure 23 Dual section DFE Equalizer 
The basic limitation of a linear equalizer, such as the transversal filter, is that it 
performs poorly on channels having spectra

 can 
-

gure 

l nulls [11]. Such channels are often 
encountered in mobile radio applications. A decision feedback equalizer (DFE) is a 
nonlinear equalizer that uses previous detected decisions to eliminate the ISI on 
pulses that are currently being demodulated. The ISI being removed was caused by 
the tails of previous pulses; in effect, the distortion on a current pulse that was 
caused by previous pulses is subtracted. Two types of DFE are possible: one where 
the feedback filter is sued with a zero-forcing equalizer (ZF-DFE) so that the 
symbols coming in to it are ISI-free and 2. DFE used with a MMSE equalizer 
(MMSE-DFE), in which case the symbols coming in have minimum ISI. Same as 
in a ZFE, the noise enhancement problem exists in a ZF-DFE. A MMSE-DFE
minimize noise enhancement as compared to the ZF-DFE. Performance of MMSE
DFE is usually better than other types, but we can still get error propagations. 

Figure 23 shows a simplified block diagram of a DFE where the forward filter and 
the feedback filter can each be a linear filter, such as a transversal filter. The fi
also illustrates how the filter tap weights are updated adaptively. The nonlinearity 
of the DFE stems from the nonlinear nature of the feed-back filters.  

 



 

∑

4w

3w

2w

1w

1x 2x 3x 4x

 Figure 24-  Decision Feedback Equalizer 
The principal behind a DFE is that if the symbols previously detected are known 
(past decisions are assumed to be correct), then the ISI contributed by these 
symbols can be canceled out exactly at the output of the feed-forward filter by 
subtracting past symbol values with appropriate weighting. The forward and 
feedback tap weights can be adjusted simultaneously to fulfill a criterion such as 
minimizing the MSE. 

When only a forward filter is used, the output of the filter contains channel noise 
contributed from every sample in the filter. The advantage of a DFE 
implementation is that the feedback filter, which is additionally working to remove 
ISI, operates on noiseless quantized levels, and thus its output is free of channel 
noise. 

Pre-set equalization  

 

On channels whose frequency responses are known but are mildly time invariant, 
the channel characteristics can be measured and the filter’s tap weights adjusted 
accordingly. If the weights remain fixed during transmission of data, the 
equalization is called pre- set equalization; one very simple method of preset 
equalization consists of setting the tap weights according to some average 
knowledge of the channel. This is used for data transmission over voice-grade 
telephone lines at less than 2400 bit/s. The significant aspect of any preset method 
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is that it is done once at the start of transmission or seldom (when transmission is 
broken and needs to be reestablished). 

Adaptive equalization  

When the equalization is capable of tracking a slowly time-varying channel 
response, it is known as adaptive equalization. It can be implemented to perform 
tap-weight adjustments periodically or continually. Periodic adjustments are 
accomplished by periodically transmitting a preamble or short training sequence of 
digital data that is known in advance by the receiver. The receiver also uses the 
preamble to detect start of transmission, to set the automatic gain control (AGC) 
level, and to align internal clocks and local oscillator with the received signal. 
Continual adjustments are made by replacing the known training sequence with a 
sequence of data symbols estimated from the equalizer output and treated as 
known data. When performed continually and automatically in this way, the 
adaptive procedure (the most popular) is referred to as decision directed [11]. The 
name “decision directed” is not to be confused with decision feedback (DFE). 
Decision directed only addresses how filter tap weights are adjusted—that is, with 
the help of a signal from the detector. DFE, however, refers to the fact that there 
exists an additional filter that operates on the detector output and recursively feeds 
back a signal to the detector input. Thus, with DFE there are two filters, a feed-
forward filter and a feedback filter that process the data and help mitigate the ISI. 

A disadvantage of preset equalization is that it requires an initial training period 
that must be invoked at the start of any new transmission. Also, a time- varying 
channel can degrade system performance due to ISI, since the tap weights are 
fixed. Adaptive equalization, particularly decision-directed adaptive equalization, 
successfully cancels ISI when the initial probability of error exceeds one percent, 
(rule of thumb). If the probability of error exceeds one percent, the decision 
directed equalizer might not converge. A common solution to this problem is to 
initialize the equalizer with an alternate process, such as a preamble to provide 
good channel-error performance, and then switch to the decision-directed mode. 
To avoid the overhead represented by a preamble, many systems designed to 
operate in a continuous broadcast mode use blind equalization algorithms to form 



initial channel estimates. These algorithms adjust filter coefficients in response to 
sample statistics rather than in response to sample decisions [11]. 

Algorithms for Adaptive Equalization 

Steepest Descent Algorithm 

The steepest Descent Algorithm is a class of algorithms that solves the problem of 
finding the coefficients in an iterative manner. Eq. (1.27) gives the form of weight 
updates we used before. In steepest Descent Method, we replace the covariance 
matrices by an approximation. 
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1− 1i i xy y ik k R R kμ− ⎡ ⎤= + −⎣ ⎦  (1.27) 

We replace the term  in Eq. (1.27) by an approximation . 1xy y iR R k −⎡ −⎣ ⎤⎦

p

p

 1i ik k μ−= +  (1.28) 

The problem of finding optimum tap-weights can now be solved iteratively by 
starting with a guess for the first weight 1k− , and an initial step sizeμ , change 
based on the gradient of the vector at that point. Steepest Descent Method is based 
on the principle that the error calculated at any particular spot on the error surface 
will decrease only if we move opposite to the gradient at that point, scaled by a 
step size. We will try to make that clear by example. 

The cost function J is a scalar function of the filter coefficients. The partial 
derivatives or the gradients of a scalar function in matrix form are defined as a 
column vector in Equation (1.29) 

 1 2
1 2

( , ,... )
⎡ ⎤∂ ∂ ∂

∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦

T

N
N

J J JJ k k k J
k k k

 (1.29) 

To show how this algorithm works, [20] we pick a 2-tap cost function. We picked 
2-taps because we can plot the function and immediately have an idea where the 
minimum lies. The cost function picked is  

  (1.30) 2 2
1 2 1 2 1 2 1 2( , ) 1.0 .75 2( )= − + + + +J k k k k k k k k



 

Figure 25 - The Error Surface 
 

We compute the gradient of the error surface by matrix differentiation rules from 
Equation (1.29) 

 [ ]2 1 1 21.0 4 0.75 4∇ = − + + + +J k k k k  (1.31) 

Let’s assume starting values of = 1 and = -1, calculate the gradient for these 
values of coefficients using expression (1.31)  

1k 2k

 2
2.25

⎡ ⎤
∇ = ⎢ ⎥−⎣ ⎦

J  

These gradients are the slope of the surface defined by the two chosen tap-weights, 
1 and -1. The gradient is uniquely defined once we know Rx and Rxy which are 
used to form the error function, Equation (1.30). We will normalize these values to 
simplify the math, and compute a normalized version of the gradient and the 
associated cost. We compute the cost at each iteration to see if it is has decreased 
enough and depending on a preset convergence factor, if we can we stop the 
computations. Normalized increment is give by  
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J
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k JJ J
kk k

 (1.32) 

 

2 2

2 0.6651
2.25 0.7472 2.25

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥− −+ ⎣ ⎦ ⎣ ⎦

 

This vector becomes the delta change in the tap-weights for the next trial. Here we 
apply a step-size or a scaling factor to provide better granularity. The estimate for 
the tap-weights for the next step is the starting tap-vector weight minus the scaled 
gradient.  

1
1
1
2

1 0.664 0.933
0.1

1 0.747 0.925
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= − =⎢ ⎥
⎤

⎢ ⎥ ⎢ ⎥ ⎢− − − ⎥
⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

k
k ⎦

 

With these new values, go to Equation (1.31) and re-compute the gradients and the 
next increment. The next step gives 

2
1
2
2

0.933 0.667 0.866
0.1

0.925 0.744 0.850
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

k
k

 

Notice that the gradient vector has not changed much. Continue until the error 
function decreases and then starts increasing. The optimum values for this case are 
approximately 0.2705 and -0.3312 
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Figure 26 - Convergence time vs. step size for Steepest Descent Method 
 

The algorithm is sensitive to step size as can be seen in the Figure 26 for same 
starting point but with different step sizes. The oscillations in cost values occur 
because the step size in too large. An alternate method where the step size is large 
at first and then reduced as the solution starts to converge, works better. The error 
surface of a transversal filter working on a W.S.S stochastic process is a bowl 
shape quadratic with order equal to number of taps [17]. Of course, the bowl 
becomes hard to graph with anything more than two taps. The steepest descent 
method step size must meet the following criteria.[4] 

 
max

10 μ
λ

< <  (1.33) 

Where maxλ is the largest eigenvalue of the matrix Rxy. The method is deterministic 
and theoretically can take an infinite number of steps to converge but in most cases 
it reaches the optimum solution fairly quickly. Formally we can write the SDM as 
a recursion 

 1 ( 1)μ− −= + −i i xy y ik k R R k  (1.34) 

We can derive this by noting that we have selected each new vector by this general 
relationship. 

 1 0μ−= +i ik k p for i >

)

 (1.35) 

Now calculate the cost function for this new value of  by substituting (1.35) into 
the previous value of the cost function at (

ik

1−i ,  

 
( ) ( ) ( ) ( )
( ) ( )

2
1 1 1 1

2
1 1 1

( ) ( )

( )

T TT
i x xy i i xy i y i

T T T T
i i y xy y i xy y

J k i R k p k p R k p R k p

J k k R R p p R k R p R p

σ μ μ μ

μ μ μ
− − − −

− − −

− + − + + + +

= + − + − +

μ

T
y

(1.36) 

Note that gradient at any step is equal to  

 

  (1.37) ( )∇ = −T
y xJ k k R R
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Substitute (1.37) the gradient, at step i into (1.36), we get  

 2
1 1( ) ( ) 2 Re ( ) T

i i iJ k J k J k p p R pμ μ− −= + ∇ +⎡ ⎤⎣ ⎦ y  (1.38) 

The last term is always positive so we can say that the error function at the next 
step is always less than at the previous step, assuming the middle term is also 
positive which becomes a condition for the algorithm to converge. 

We can now set the value of the next step as opposite of the gradients 

 [ ]1( ) 1− −= − ∇ = −T
i xy y ip J k R R k  (1.39) 

Which is the gradient at the previous step, which is exactly what we did in the 
example in this section. 

Least Mean Square LMS 

Steepest Gradient Descent although simple requires knowledge of variance matrix. 
Another class of algorithms called Stochastic Gradient algorithms further 
simplify the estimation process by making estimates for the covariance and cross 
variances. The advantages of using approximations is that we no longer need to 
know the covariance and cross variances of the actual signals which are not 
available anyway once we are past the training phase. These algorithms are often 
used in the tracking mode if the channel is to continue to adapt to the channel after 
the training sequence is exhausted. These are true adaptive algorithms in that they 
learn and adjust to the channel. This most popular of all equalization algorithms 
developed by Widrow [20, 21] is a variation of stochastic-gradient algorithm, 
called least-mean-square (LMS) algorithm.  

In LMS algorithm, we start with the steepest descent method, Equation (1.34) We 
need two variance matrices, yR  and xyR . But instead of the actual matrices, we use 
their instantaneous values as an estimate. We rewrite the steepest descent equation 
by making the following substitutions and then rewriting  

 ( )≅ T ≅ T
xy i y i iR x i y and R y y  (1.40) 
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 1 ( ( ) )μ 1− −= + −T T
i i i i ik k y x i y k  (1.41) 



This simple relationship is a consequence of the orthogonality principle that states 
that the error formed by an optimal solution is orthogonal to the data. Since this is 
a recursive algorithm, care must be exercised to assure algorithm stability. Stability 
is assured if the parameter μ  is smaller than the reciprocal of the energy of the data 
in the filter. When stable, this algorithm converges in the mean to the optimal 
solution but exhibits a variance proportional to the parameter. Thus, while we want 
the convergence parameter μ  to be large for fast convergence but not so large as to 
be unstable, we also want it to be small enough for low variance. The parameter is 
usually set to a fixed small amount [12] to obtain a low-variance steady-state tap-
weight solution. Schemes exist that permit μ to change from large values during 
initial acquisition to small values for stable steady-state solutions [13]. 

The rule of thumb for selecting step size in slowly-varying channel according to 
[15] is  

 1
(5 )

Δ =
rcvdN SNR

 (1.42) 

Where N is number of taps and SNR is for the received signal. For a signal of SNR 
2 and 5 taps, the step size should be 0.02. The example shown in Figure 24 uses a 
step size of .02. 

Example of the LMS algorithm 

Figure 27 shows an example of equalization performed by the LMS equalizer. A 
sine wave experiences ISI and noise as shown. The LMS converges quickly and is 
successful in removing a great deal of the noise. Figure 28  shows the values of the 
tap-weights oscillating which is normal part of this process as they are trying to 
track the signal and one would expect them to change along with the signal. 
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Figure 27 - LMS equalizer input and the equalized signal. 
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Figure 28 -The convergence of the filter tap-weights 
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Normalized LMS 

One problem with LMS is that once the signal tracking has approached steady 
state, we ought be able to reduce the size of the step since ostensibly only minor 
changes are needed. That cannot be done with LMS. The normalized LMS 
overcomes this.  

The normalized LMS (NLMS) algorithm is a modified form of the standard LMS 
algorithm where the step size is made a function of the received power as well a 
function of time. It is no longer fixed as in LMS. 

 2
( )( 1) ( ) ( )
( )
y nk n k n e n
y n

μ+ = +  (1.43) 

You also can rewrite the above equation to the following equation: NLMS usually 
converges faster than LMS and maintains better tracking. 

6.6.5. Minimum Least Sequence Estimation (MLSE) 

 

Figure 29 – Sequence adaptation 
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Previous sections covered equalization performed on the symbol. There is another 
techniques that works on sequences of symbol rather than on one symbol at a time. 
In 1967, Andrew Viterbi first presented his now famous algorithm for the decoding 
of convolutional codes [1] - [ 3 ]. A few years later, what is now known as the 
Viterbi decoding algorithm (VDA) was applied to the detection of data signals 
distorted by intersymbol interference (LSI) [4]-[8]. For such applications, the 
algorithm is often referred to as a Viterbi equalizer (VE).  Note that many 
equalizing techniques use filters to compensate for the non-ideal properties of a 
channel. That is, equalizing filters at the receiver attempt to modify the distorted 
waveforms. However, the operation of a VE is quite different. It entails making 
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channel measurements to estimate hc(t) and then adjusting the receiver by 
modifying its reference waveforms according to the channel environment. The goal 
of such adjustments is to enable the receiver to make good data estimates from the 
received message waveforms. With a VE, the distorted message waveforms are not 
reshaped or directly modified (with the exception of the preconditioning step); 
instead the mitigating technique is for the receiver to "adjust itself" in such a way 
that it can better deal with the distorted waveforms. 

The VDA has become very popular for processing ISI-distorted signals that stem 
from a linear system with finite memory. Such a system is referred to as a finite-
state machine (FSM), which is the general name given to a system whose output 
signals are affected by signals that occur earlier and later in time.   

Copyright Charan Langton 2009, All Rights reserved. 

Your comments, corrections are welcome. Please post them on 
www.complextoreal.com 
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